An einer chemischen Bindung zupfen

Stäbchenmodell des verwendeten Moleküls. Der starke Anstieg im Anregungssignal, während der Oszillation der Spitze über die einzelnen chemischen Bindungen, ist in Farbe überlagert (Farbschema blau bis orange). Uni Regensburg

Es bietet atemberaubende Bilder von Molekülen und Oberflächen auf atomarer Ebene – das Rasterkraftmikroskop. Darüber hinaus kann es zur Anregung molekularer Systeme verwendet werden.

Eine energetische Anregung ist der entscheidende Schritt für die Herstellung und das Aufbrechen chemischer Bindungen und tritt bei allen chemischen Reaktionen auf.

Physiker der Universität Regensburg haben nun ein einzelnes Kohlenstoffmonoxid-Molekül an der Spitze ihres Rasterkraftmikroskops befestigt und die Spitze parallel über ein größeres Molekül bewegt.

Sie konnten zeigen, dass das Kohlenstoffmonoxid-Molekül an der Spitze mit den chemischen Bindungen des größeren Moleküls wechselwirkt – und zwar jeweils nur mit einer einzelnen Bindung.

Diese neue Methode erlaubt es den Wissenschaftlern, Paare von aneinander gebunden Atomen mechanisch anzuregen und die zur Anregung nötige Energie zu bestimmen. Die Ergebnisse sind im Journal Physical Review Letters erschienen.

Im Jahr 2009 berichteten Wissenschaftler von IBM in der Schweiz, dass durch das gezielte Anfügen eines Kohlenstoffmonoxid-Moleküls an die Spitze eines Rasterkraftmikroskops die innere Struktur von Molekülen abgebildet werden kann.

Für die Anregung chemischer Bindungen ist jedoch eine Variation dieser Methode notwendig. Die Regensburger Wissenschaftler bewegten die Kohlenstoffmonoxid-terminierte Spitze in lateraler Richtung. Sie fanden heraus, dass das Kohlenstoffmonoxid-Molekül an der Spitze sich vor einer chemischen Bindung zunächst wie eine Feder biegt und dann zur anderen Seite der Bindung überspringt.

„Ich stelle mir das Kohlenstoffmonoxid-Molekül wie ein Plektrum vor, das anstatt an einer Gitarrensaite an einer chemischen Bindung zupft“, so der leitende Forscher der Gruppe, Jay Weymouth, „Im Gegensatz zu anderen Techniken regen wir jedoch nicht das gesamte Molekül, sondern vielmehr eine bestimmte Bindung an“.

Diese einzigartige Entwicklung erlaubt die gezielte Anregung individueller Bindungen mit einer bestimmten Energie.

Weymouth geht davon aus, dass künftige Anwendungen die optische Detektion von Molekülschwingungen beinhalten könnten.

Das Verständnis über das Verhalten der molekularen Komponenten in chemischen Reaktionen könnte dadurch verbessert werden und eine bessere Kontrolle derselben ermöglichen.

PD Dr. Alfred Jay Weymouth
Lehrstuhl für Quanten-Nanowissenschaft
Universität Regensburg
Telefon: 0941 943-2108
E-Mail: jay.weymouth@ur.de

Alfred J. Weymouth, Elisabeth Riegel, Oliver Gretz, and Franz J. Giessibl, “Strumming a single chemical bond“, Physical Review Letters (2020).
DOI: 10.1103/PhysRevLett.124.196101
https://link.aps.org/doi/10.1103/PhysRevLett.124.196101

Media Contact

Christina Glaser idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neutronen-basierte Methode hilft, Unterwasserpipelines offen zu halten

Industrie und private Verbraucher sind auf Öl- und Gaspipelines angewiesen, die sich über Tausende von Kilometern unter Wasser erstrecken. Nicht selten verstopfen Ablagerungen diese Pipelines. Bisher gibt es nur wenige…

Dresdner Forscher:innen wollen PCR-Schnelltests für COVID-19 entwickeln

Noch in diesem Jahr einen PCR-Schnelltest für COVID-19 und andere Erreger zu entwickeln – das ist das Ziel einer neuen Nachwuchsforschungsgruppe an der TU Dresden. Der neuartige Test soll die…

Klimawandel und Waldbrände könnten Ozonloch vergrößern

Rauch aus Waldbränden könnte den Ozonabbau in den oberen Schichten der Atmosphäre verstärken und so das Ozonloch über der Arktis zusätzlich vergrößern. Das geht aus Daten der internationalen MOSAiC-Expedition hervor,…

Partner & Förderer