Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

Hellfeldmikroskopische Aufnahme von Zebrabärblingembryonen. Das Bild entstand rund vier Stunden nach der Befruchtung. Aufnahme: Prof. Gilbert Weidinger

Die DNA gilt als Bauplan des Lebens. Sie trägt all die Informationen in sich, die ein biologischer Organismus braucht, um sich vollends zu entwickeln. Um diese genetisch codierte Information überhaupt nutzen zu können, wird sie im Zellkern in eine Art Protokoll übertragen, das die jeweiligen Baupläne zur Synthese von Biomolekülen in sich trägt.

Dafür wird DNA in RNA transkribiert, also übersetzt. Wissenschaftlern der Universität Ulm ist es nun gelungen, mit Hilfe eines speziell entwickelten Fluoreszenzmikroskops „live“ in der Zelle zu verfolgen, wie der Transkriptionsprozess während der Embryonalentwicklung erstmals in Gang gebracht und damit das Genom aktiviert wird. Veröffentlicht wurden die Ergebnisse in der renommierten Fachzeitschrift Nature Communications.

Für ihre Studie haben die Ulmer Forscher in Embryonen des Zebrabärblings die Aktivität und den Bindungsstatus von Transkriptionsfaktoren untersucht. Diese besonderen Proteine binden an die DNA und lösen damit den Transkriptionsprozess aus. Dabei ist es dem Team aus Biophysikern und Entwicklungsbiologen erstmals gelungen, diese Biomoleküle während der Embryonalentwicklung „bei der Arbeit“ zu beobachten.

„Die Embryonalentwicklung gehört zu den faszinierendsten biologischen Prozessen überhaupt. Besonders spannend ist dabei die Frage, wann und wie im Prozess der fortlaufenden Zellteilungen das Genom aktiviert wird“, so Professor Christof Gebhardt, vom Institut für Biophysik an der Universität Ulm.

In der frühen Phase der Embryonalentwicklung ist es die mütterliche Eizelle, die RNA und Proteine bereitstellt. Die embryo-eigene Transkription, also die erstmalige Aktivierung des Genoms, erfolgt bei Zebrabärblingembryonen erst nach der zehnten Zellteilung – beim Menschen etwas früher. Unbekannt war bislang, wie genau die Genomaktivierung zum aller ersten Mal in Gang gebracht wird.

Die Ulmer Biophysiker haben nun gemeinsam mit Wissenschaftlern aus dem Institut für Biochemie und Molekularbiologie der Uni Ulm untersucht, wie sich die Interaktion von bestimmten Transkriptionsfaktoren mit der DNA im Zellkern im Laufe der Embryonalentwicklung verändert. Dabei haben sie herausgefunden, dass das veränderte Volumen des Zellkerns eine Schlüsselrolle bei der Genomaktivierung spielt.

„In den frühen Phasen der Embryonalentwicklung teilen sich die Zellen ohne zu wachsen. Das Volumen der Zellkerne wird dadurch kleiner“, erklärt Matthias Reisser. Der Doktorand am Institut für Biophysik ist Erstautor der Studie. Durch die Verkleinerung des Reaktionsvolumens verschiebt sich im Zellkern das physikalisch-chemische Gleichgewicht der Transkriptionsfaktoren hin zum DNA-gebundenen Zustand.

Durch die vermehrte Bindung an die DNA bringen die Transkriptionsfaktoren schließlich den genetischen „Übersetzungsprozess“ erstmals zum Laufen. „Erst wenn es richtig eng wird im Zellkern, wird das Genom aktiviert“, umschreibt Entwicklungsbiologe Professor Gilbert Weidinger vom Institut für Biochemie und Molekularbiologie den Befund.

„Um die Transkriptionsfaktoren im Zellkern genau lokalisieren zu können, arbeiten wir mit einer weiterentwickelten Form der Fluoreszenzmikroskopie, die es möglich macht, einzelne, speziell markierte Biomoleküle in lebenden Zellen sichtbar zu machen und deren Bewegung zu verfolgen: die Lichtblattmikroskopie“, erläutert der Biophysiker Gebhardt. Hier wird nur eine dünne Schicht der Probe beleuchtet, was zu einer höheren Sensitivität führt.

Außerdem ist das Verfahren so schonend, dass die untersuchten Biomoleküle nicht unter lichtinduziertem Stress leiden und so keinen Schaden nehmen. Dadurch ist es möglich „Single Molecule Tracking“-Aufnahmen in lebenden Organismen zu machen, und damit eben auch Langzeitbeobachtungen während der Embryonalentwicklung. Am Institut für Biophysik hat Professor Gebhardt dieses Verfahren noch leistungsfähiger gemacht.

„Die Ergebnisse unserer Forschung sind grundlegend, um zu verstehen, wie die Genomaktivierung im Zuge der Embryonalentwicklung initialisiert wird. Die am Zebrabärbling gewonnenen Erkenntnisse über den Zusammenhang zwischen Zellkernvolumen und Transkriptionsfaktoraktivität können dabei auf andere Spezies wie den Menschen übertragen werden“, sind sich Gebhardt und Weidinger sicher.

Das Projekt wurde von der Deutschen Forschungsgemeinschaft gefördert sowie vom europäischen Wissenschaftsrat, der Studienstiftung des Deutschen Volkes und der Carl-Zeiss-Stiftung. Unterstützt wurde es vom Zentrum für translationale Bildgebung (MoMAN) der Universität Ulm.

Text und Medienkontakt: Andrea Weber-Tuckermann

Weitere Informationen:
Prof. J. Christof M. Gebhardt, Institut für Biophysik, Tel.: 0731 / 50 23051; E-Mail: andrea.weber-tuckermann@uni-ulm.de

Matthias Reisser, Anja Palmer, Achim P. Popp, Christopher Jahn, Gilbert Weidinger & J. Christof M. Gebhardt: Single-molecule imaging correlates decreasing nuclear volume with increasing TF-chromatin associations during zebrafish development; in: Nature Communications Volume 9, Article Number 5218 (2018); https://doi.org/10.1038/s41467-018-07731-8

Ansprechpartner für Medien

Andrea Weber-Tuckermann idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Partikelmesstechnik in der Produktionslinie

Forschungsprojekt SPOT geht an den Start … Partikuläre Verunreinigungen und Defekte auf Bauteiloberflächen werden in der Produktion entweder durch Sichtkontrolle oder durch Abspülen des Bauteils und Analyse der Spülflüssigkeit erkannt….

FEL-Lasing erstmals unter 170 Nanometer mit Optiken vom LZH

Bisher erreichten Oszillator-Freie-Elektronenlaser nur Ausgangswellenlängen bis zu 176,4 Nanometer. Wissenschaftlerinnen und Wissenschaftlern des Laser Zentrum Hannover e.V. (LZH) ist es nun gelungen, Optiken herzustellen, mit denen Physiker der Duke University,…

Neue Generation von Carbonfasern für High-Tech-Anwendungen

Carbonfasern sind in vielen Industriebranchen unentbehrliche Bestandteile von High-Tech-Materialien. Wissenschaftler*innen der Universität Bayreuth wollen jetzt eine neue Generation von Carbonfasern erforschen und entwickeln. Die Fasern sollen sich durch eine gesteigerte…

Partner & Förderer