Die tödlichen Waffen der Quallen entschlüsselt

Süßwasserpolyp Hydra. Tier mit Fangarmen (Tentakeln) und Knospen (links); Tentakel mit Nesselzellen in Batteriezellen eines Tentakels (Mitte); isolierte z. T. entladene Nesselkapseln (rechts)<br><br>Fotos: Nüchter und Holstein (links), Holstein (Mitte und rechts), Molekulare Evolution & Genomik, COS Heidelberg<br>

Heidelberger Wissenschaftlern ist es gelungen, den Verteidigungsmechanismus von Quallen zu entschlüsseln. Forscher um Prof. Dr. Thomas Holstein und Privatdozent Dr. Suat Özbek vom Centre for Organismal Studies (COS) der Ruperto Carola haben in Zusammenarbeit mit Kollegen des Deutschen Krebsforschungszentrums (DKFZ) das Proteom, also die Gesamtheit der Proteine, der sogenannten Nesselzellen analysiert.

Mit Untersuchungen an Zellen des Süßwasserpolypen Hydra fanden die Biologen heraus, dass bestimmte Zellstrukturen – die Organellen – eine außerordentlich komplexe Zusammensetzung von Giften und Proteinen aufweisen. Die Forschungsergebnisse zeigen außerdem, wie die Energie für die Abgabe des Gifts in den Nesselzellen gespeichert und mit außergewöhnlich hoher Geschwindigkeit freigesetzt werden kann.

Mit ihren Giftzellen haben Quallen und andere Nesseltiere einen der giftigsten und differenziertesten zellulären Mechanismen in der Tierwelt entwickelt. Nesselzellen, die auch als Nematocyten oder Cnidozyten bezeichnet werden, sitzen in der Außenhaut der Nesseltiere und werden zum Beutefang oder zur Verteidigung eingesetzt. Sie bestehen vor allem aus einer Nesselkapsel, einer in Relation zur gesamten Zelle riesigen Organelle. Darin befinden sich wiederum der sogenannte Nesselschlauch und ein Stilett, über die die Gifte der Nesseltiere nach außen transportiert werden. Diese zellulären Waffen enthalten eine Mischung von bisher unbekannten Giften, die das Nervensystem von Beutetieren lähmen und deren Zellen zerstören.
Die Injektion der Gifte erfordert einen effektiven Mechanismus. Forschungen haben gezeigt, dass die Giftabgabe mit einem extrem hohen Druck von 15 Megapascal verbunden ist, wodurch das Stilett, eine dünne Nadel, selbst die Panzer von Krebstieren durchdringen kann. Mit einer Geschwindigkeit von weniger als 700 Nanosekunden, in denen das Stilett mit einer Kraft von 5.000.000 g beschleunigt wird, ist die Giftinjektion mit dem Abschuss einer Harpune vergleichbar.

Bisher waren die molekularen Bestandteile, die für die biomechanischen Eigenschaften der Nesselzellen verantwortlich sind, weitgehend unbekannt. Die Heidelberger Wissenschaftler haben nun Zellen des Süßwasserpolypen Hydra magnipapillata mit Hilfe der Protein-Massenspektroskopie untersucht. Mit diesem Verfahren, mit dem sich die chemische Zusammensetzung von Substanzen qualitativ und quantitativ genau analysieren lässt, konnten die Forscher das Nematocyten-Proteom von Hydra entschlüsseln. Von seiner Komplexität waren die Forscher um Prof. Holstein und Dr. Özbek überrascht: Die Biologen entdeckten 410 Proteine mit giftigen und zellzersetzenden, aber auch mit adhäsiven oder faserigen Eigenschaften. Dabei enthalten die Proteine der Nesselkapselwand bislang unbekannte strukturelle Bausteine, die eine bindegewebsartige Matrix bilden, also ein komplexes Proteingeflecht. Diese Struktur aus Collagen und Elastomeren ist im Hinblick auf ihre Elastizität und Belastbarkeit selbst Spinnenseide überlegen.

Mit diesen Forschungsergebnissen können die Heidelberger Wissenschaftler erklären, wie die Energie für die Abgabe des Gifts in den Nesselzellen gespeichert und durch die dehnbare Struktur der Nesselkapselwand im Nanosekundenbereich und mit außergewöhnlicher Geschwindigkeit freigesetzt werden kann. „Die Giftzellen der Nesseltiere stellen damit eine effektive Kombination eines kraftvollen molekularen Federungsmechanismus und einer Struktur mit extremen biophysikalischen Eigenschaften dar“, sagt Prof. Holstein. Darüber hinaus legen die Untersuchungen nahe, dass die Organellen, die das Gift zur Injektion enthalten, in ihrer Entwicklung molekulare Eigenschaften von Bindegewebsproteinen wie Kollagenen übernommen haben. Nur so kann es nach Angaben von Prof. Holstein möglich gewesen sein, einen derart differenzierten Mechanismus zum Beutefang und zur Verteidigung auszubilden.

Originalpublikation:
Prakash G. Balasubramanian, Anna Beckmann, Uwe Warnken, Martina Schnölzer, Andreas Schüler, Erich Bornberg-Bauer, Thomas W. Holstein, and Suat Özbek: Proteome of Hydra Nematocyst, Journal of Biological Chemistry, 23 March, 2012, doi:10.1074/jbc.M111.328203

Kontakt:
Prof. Dr. Thomas Holstein / Privatdozent Dr. Suat Özbek
Centre for Organismal Studies
Telefon (06221) 54-5679, -5638
thomas.holstein@cos.uni-heidelberg.de
suat.oezbek@cos.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Media Contact

Marietta Fuhrmann-Koch idw

Weitere Informationen:

http://www.uni-heidelberg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mit Physik mehr Bier im Glas

Ist Schaum in der Badewanne oder auf dem Bier durchaus gewünscht, ist die Vermeidung von Schaum – beispielsweise in industriellen Prozessen – ein viel diskutiertes Thema. Oftmals werden Flüssigkeiten Öle…

Reliefkarte für Genverstärker

Wie stark wirkt ein Genschalter auf sein Gen? Ein Berliner Forschungsteam hat ein Register aus Genverstärkern, deren Lage im Genom sowie ihrer Aktivierungsstärke in Mäuse-Stammzellen erstellt. Dabei entdeckten sie DNA-Muster,…

Ultraschnelle Videokamera für elektrische Felder

Von Heinrich Hertz zu Terahertz: High-Tech-Anwendungen in der Optoelektronik arbeiten heute mit ultraschnellen elektrischen Schwingungen und erreichen teilweise Frequenzen bis in den Terahertz-Bereich. Einem Team der Universitäten Bayreuth und Melbourne…

Partner & Förderer