Punktgenau zusammengesteckt

Rasterkraftmikroskopische Aufnahmen zeigten, dass die Streptavidinmoleküle immer spezifisch in der jeweils vorgesehenen Aussparung des Origami-Rechtecks gebunden waren.(c) Wiley-VCH<br>

DNA ist nicht nur der Träger der genetischen Information, DNA ist auch ein interessantes Nanobaumaterial. Ähnlich wie beim Origami, der japanischen Kunst des Papierfaltens, lässt sich beispielsweise ein langer DNA-Einzelstrang mithilfe kurzer DNA-Stückchen in eine nahezu beliebige dreidimensionale Form falten.

Diese Nanostruktur lässt sich zudem mit spezifischen Andockstellen für Proteine ausstatten. Ein Team um Takashi Morii von der Universität Kyoto stellt in der Zeitschrift Angewandte Chemie nun eine neue Methode vor, mit der die Proteine über spezielle „Adapter“ angeknüpft werden, so genannte Zinkfingerproteine.

Physiologische Vorgänge und chemische Reaktionen in Zellen laufen hochspezifisch in mehreren Reaktionsschritten ab. Mehrere Enzyme müssen kooperieren, um die aufeinanderfolgenden Schritte der notwendigen chemischen Transformationen zu katalysieren – wesentlich effizienter als künstliche Systeme dies vermögen. Die natürlichen Systeme lassen sich nur effektiv nachahmen, wenn sich die einzelnen Enzyme und Faktoren im richtigen nanoskopischen Abstand zueinander befinden. DNA-Origami-Strukturen lassen sich als eine Art „molekularer Stecktafeln” nutzen, um Enyzme und andere Proteine mit Nanometer-Präzision anzuordnen.

Verschiedene Methoden zur Anbindung von Proteinen an DNA-Origamis wurden bereits entwickelt, dazu ist aber meist eine Modifikation des Proteins notwendig. „Eine nur auf Proteinen basierende Methode wäre wünschenswert“, so Morii, „denn sie würde die Bindung von Proteinen an die Origamis vereinfachen und beschleunigen.“

Morii und sein Team setzen auf Zinkfingerproteine als „Adapter“. Eine Polypeptidkette eines Zinkfingerproteins bindet ein Zinkion und nimmt dabei eine stabile, kompakt gefaltete Form ein, die als „Zinkfinger“ bezeichnet wird und spezifisch an bestimmte DNA-Motive binden kann. Zinkfinger können so konstruiert werden, dass sie jedes gewünschte DNA-Motiv erkennen.

Die Wissenschaftler stellten rechteckige Origami-Strukturen her, die mehrere definierte Aussparungen enthielten. An diesen Stellen enthielten die Origamis verschiedene DNA-Erkennungsmotive für verschiedene Zinkfinger. Dann konstruierten sie Proteine, die an einem Ende Zinkfinger-Einheiten enthielten, am anderen Ende ein fluoreszierendes Protein oder ein Biotin-Molekül. Biotin bindet spezifisch an das große Protein Streptavidin. Rasterkraftmikroskopische Aufnahmen zeigten, dass die Streptavidinmoleküle immer spezifisch in der jeweils vorgesehenen Aussparung des Origami-Rechtecks gebunden waren.

„Unsere Ergebnisse belegen, dass Zinkfinger geeignete Adapter sind, um bequem Positionen einer DNA-Origami-Struktur ortsselektiv ansteuern zu können“, sagt Morii. „Mehrere verschiedene Adapter, die verschiedene Proteine tragen, können dabei voneinander unabhängig voneinander an definierte Stellen einer solchen Nanostruktur geknüpft werden.“

Angewandte Chemie: Presseinfo 04/2012

Autor: Takashi Morii, Kyoto University (Japan), http://akweb.iae.kyoto-u.ac.jp/material/en/index.html

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201108199

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Weitere Informationen:

http://presse.angewandte.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mikroalge Stylodinium – ein geheimnisvoller Unbekannter aus dem Moor

Die Alge des Jahres 2022 … LMU-Biologe Marc Gottschling untersucht die Panzergeißler seit Langem. Einer ihrer bemerkenswertesten Vertreter wird jetzt zur Alge des Jahres 2022 gewählt. Die Mikroalge Stylodinium wird…

Zur Rolle von Bitterrezeptoren bei Krebs

Rezeptoren als Angriffspunkte für Chemotherapeutika. Bitterrezeptoren unterstützen den Menschen nicht nur beim Schmecken. Sie befinden sich auch auf Krebszellen. Welche Rolle sie dort spielen, hat ein Team um Veronika Somoza…

Das ungleichmäßige Universum

Forscher untersuchen kosmische Expansion mit Methoden aus der Physik von Vielteilchensystemen. Mathematische Beschreibungen der Expansion des Universums beinhalten einen systematischen Fehler: Man nimmt an, dass die Materie im Universum gleichmäßig…

Partner & Förderer