Photochemische Deracemisierung chiraler Verbindungen gelungen: Das verschwundene Spiegelbild

Die Allen-Gruppe des unerwünschten Enantiomers kommt dem Thioxanthon-Sensibilisator deutlich näher und wird daher in die gewünschte Form umgewandelt. Bild: S. M. Huber und A. Bauer / TUM

Wirkstoffe herzustellen, die ganz spezifische, beispielsweise antibakterielle Eigenschaften haben, ist oft gar nicht so einfach. Der Grund: Viele dieser organischen Verbindungen sind chiral. Das heißt, von ihnen gibt es zwei spiegelbildlichen Formen, sogenannte Enantiomere.

Bei der Wirkung von Medikamenten kann dieser kleine Unterschied folgenreich sein, denn Enantiomere können unterschiedliche Wirkungen haben. So kann ein Enantiomer heilend wirken, das andere Enantiomer aber wirkungslos sein oder sogar unerwünschte Nebenwirkungen hervorrufen.

Zeit, Energie und Ressourcen sparen

„Seit Langem suchen Forscher auf der ganzen Welt nach Möglichkeiten, aus einem Racemat gezielt nur das gewünschte Enantiomer herzustellen“, erläutert Prof. Thorsten Bach, Inhaber des Lehrstuhls für organische Chemie an der TU München. Dies galt bisher jedoch als sehr schwierig, weil bei chemischen Reaktionen in der Regel immer beide Formen des Moleküls entstehen.

Zusammen mit seinem Team hat der Forscher jetzt eine Methode entwickelt, mit der sich aus einem Racemat, einem Gemisch beider Enantiomere, das gewünschte Enantiomere in hoher Konzentration – bis zu 97 Prozent – gewinnen lässt.

Anstatt die unerwünschten Spiegel-Moleküle wie bisher mühsam aus dem Gemisch herauszufischen, verwandeln die Forschenden sie mit Hilfe einer photochemischen Reaktion in das gewünschte Endprodukt. „Das spart Zeit, Energie und Ressourcen, weil alle Moleküle genutzt werden und man nicht die Hälfte wegwerfen muss“, erklärt Bach.

Ein Katalysator für die „richtigen“ Verbindungen

Das Geheimnis der Verwandlung ist ein besonderer photochemischer Katalysator. Ursprünglich wurde der Thioxanthon-Farbstoff für [2+2]-Photocycloadditionen entwickelt. Er ist selbst chiral und wandelt daher gezielt nur eines der Enantiomere in das andere um. Innerhalb weniger Minuten verschiebt sich so das Gleichgewicht zu Gunsten des gewünschten Enantiomers. Die unerwünschten Spiegelbilder verschwinden.

Ihre neue Methode haben die Chemiker an verschiedenen Molekülgemischen aus der Strukturklasse der Allene erfolgreich getestet. „Damit konnten wir zeigen, dass eine selektive und effiziente Katalyse zur Herstellung von enantiomerenreinen Verbindungen aus Racematen grundsätzlich möglich ist“, so Bach.

Weitere Informationen:

Das Projekt wurde gefördert durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Graduiertenkollegs GRK 1626, eines Reinhart Koselleck-Projekts sowie des Exzellenzclusters RESOLV. Kooperationspartner waren die Universitäten Bonn und Bochum.

Prof. Dr. Thorsten Bach
Lehrstuhl für Organische Chemie I
Technische Universität München
Lichtenbergstr. 4, 85747 Garching
Tel. +49-89-28913330 – E-Mail: thorsten.bach@ch.tum.de

Catalytic deracemisation of chiral allenes enabled by sensitised excitation with visible light,
Alena Hölzl-Hobmeier, Andreas Bauer, Alexandre Vieira Silva, Stefan M. Huber, Christoph Bannwarth, Thorsten Bach
Nature, 564, 240–243 (2018) – DOI: 10.1038/s41586-018-0755-1
https://www.nature.com/articles/s41586-018-0755-1

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/35146/ Link zur Pressemitteilung
http://www.oc1.ch.tum.de/index.php?mID=home&mSC=0&mLang=de Link zur Homepage des Lehrstuhls für Organische Chemie I

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer