Neuer Regulator für Informationstransfer im Gehirn gefunden

Nervenzelle mit synaptischen Kontakten.<br>(Foto: Biozentrum)<br>

Dies hat die Forschungsgruppe von Prof. Peter Scheiffele am Biozentrum der Universität Basel jetzt herausgefunden.. Die Untersuchungsergebnisse sind im Fachjournal «Neuron» veröffentlicht.

Synapsen sind die wichtigsten Übertragungsstellen für Informationen zwischen Nervenzellen. Sie sind fähig, innerhalb eines Bruchteils einer Sekunde Botenstoffe auszuschütten und ermöglichen so eine rasend schnelle Signalübertragung von Zelle zu Zelle.

Das Team von Prof. Peter Scheiffele hat nun einen neuen Mechanismus identifiziert, welcher sicherstellt, dass synaptische Vesikel, die Träger des Botenstoffes, an den für sie vorgesehenen Ort gelangen und damit zur schnellen Signalübertragung beitragen können.

mSYD1 als Organisator der synaptischen Struktur
Die Geschwindigkeit und Präzision der Signalweiterleitung an Synapsen basiert auf einem hochkomplexen Apparat von Proteinen an der Synapse. Die synaptischen Vesikel liegen dabei angereichert an den synaptischen Kontaktstellen zwischen Nervenzellen. Wird eine Nervenzelle aktiviert, öffnen sich Vesikel am Rand der Synapse, der sogenannten aktiven Zone, und schicken den Botenstoff zur benachbarten Zelle.

Die Forschungsgruppe von Peter Scheiffele konnte nun ein zuvor unbekanntes Protein namens mSYD1 identifizieren, welches die Anlagerung von Vesikeln an der aktiven Zone reguliert. In Nervenzellen, in denen durch eine genetische Manipulation kein mSYD1 Protein vorliegt, bilden sich weiterhin synaptische Kontakte aus, aber die Anreicherung der synaptischen Vesikel an der aktiven Zone ist gestört. Dies führt zu einem Verlust der synaptischen Signalübertragung.

Inaktives mSYD1 bei autistischen Störungen
Diese Ergebnisse bringen einen wichtigen neuen Einblick in die Mechanismen, die der Ausbildung neuronaler Netzwerke zugrunde liegen. mSYD1 ist eines von einer Gruppe von Genen, die in Patienten mit einer Entwicklungsstörung aus dem Autismus-Spektrum inaktiviert sind. Weitere Arbeiten in der Arbeitsgruppe erforschen nun, wie sich die Inaktivierung von mSYD1 auf das Verhalten von Mäusen auswirkt, um so Einblicke in die grundlegenden Prozesse von autistischen Störungen zu bekommen.

Originalbeitrag
Corinna Wentzel, Julia Sommer, Ramya Nair, Adeline Stiefvater, Jean-Baptiste Sibarita, and Peter Scheiffele (2013):
mSYD1A, a Mammalian Synapse-Defective-1 Protein, Regulates Synaptogenic Signaling and Vesicle Docking.
Neuron; Published online June 19, 2013.

Weitere Auskünfte
Prof. Dr. Peter Scheiffele, Biozentrum der Universität Basel, Tel. +41 (0)61 267 21 94, E-Mail: peter.scheiffele@unibas.ch

Media Contact

Christoph Dieffenbacher Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Globale Erwärmung aktiviert inaktive Bakterien im Boden

Neue Erkenntnisse ermöglichen genauere Vorhersage des Kohlenstoffkreislaufs. Wärmere Böden beherbergen eine größere Vielfalt an aktiven Mikroben: Zu diesem Schluss kommen Forscher*innen des Zentrums für Mikrobiologie und Umweltsystemforschung (CeMESS) der Universität…

Neues Klimamodell

Mehr Extremregen durch Wolkenansammlungen in Tropen bei erhöhten Temperaturen. Wolkenformationen zu verstehen ist in unserem sich wandelnden Klima entscheidend, um genaue Vorhersagen über deren Auswirkungen auf Natur und Gesellschaft zu…

Kriebelmücken: Zunahme der Blutsauger in Deutschland erwartet

Forschende der Goethe-Universität und des Senckenberg Biodiversität und Klima Forschungszentrums in Frankfurt haben erstmalig die räumlichen Verbreitungsmuster von Kriebelmücken in Hessen, Nordrhein-Westfalen, Rheinland-Pfalz und Sachsen modelliert. In der im renommierten…

Partner & Förderer