Morsezeichen aus der Zelle

Die hochauflösende Mikroskopietechnik qPAINT erlaubt die Quantifizierung einzelner Moleküle. Durch Laserstrahlen in verschiedener Wellenlängen werden einzelne Farbstoffe sichtbar gemacht. Maximilian Strauss © MPI für Biochemie

Großbaustellen können chaotisch wirken, weil hunderte von Bauarbeitern in wechselnder Besetzung zusammenarbeiten und sich dabei von einer Stelle zur anderen bewegen. Ähnlich unübersichtlich sind die Vorgänge in Zellen, die Forscher buchstäblich im Dunkeln tappen lassen.

Die mikroskopisch kleinen Moleküle können nur mit Hilfe von fluoreszierenden Farbstoffen aufgespürt werden, die an die gesuchte Struktur andocken und dann aufleuchten. Ralf Jungmann, der am Max-Planck-Institut für Biochemie und der Ludwig-Maximilians-Universität München die Gruppe „Molekulare Bildgebung und Bionanotechnologie” leitet, hat diesen Ansatz in mehreren Schritten weiterentwickelt. DNA-PAINT heißt das Verfahren, das es erlaubt, eine Vielzahl zelluläre Moleküle und ihre Interaktionen mit hoher Genauigkeit abzubilden.

Das gelingt, weil der Farbstoff und das gesuchte Molekül nicht direkt binden, sondern jeweils an einen kurzen DNA-Strang gekoppelt sind. Diese Abschnitte sind in ihrem Aufbau komplementär, so dass sie sich wie zwei Hälften eines Reißverschlusses zusammenfügen.

Dann verrät der Farbstoff das Zielmolekül und dessen Position. Die Stärke der DNA-Bindung kann eingestellt werden. Ist sie schwach genug, lösen sich die beiden Stränge voneinander, und das Signal erlischt wieder. Nach dem sogenannten Exchange-PAINT-Ansatz können dann in nachfolgenden Schritten weitere Moleküle in der experimentell fixierten Zelle nachgewiesen werden.

So entstehen Schnappschüsse, die jeweils nur eine bestimmte zelluläre Struktur nachweisen. Übereinander gelegt entsteht aber in unerreicht hoher räumlicher Auflösung eine Art Gruppenfoto der zellulären Moleküle, die zu einem gegebenen Zeitpunkt zu einem gemeinsamen Prozess beitragen und dafür interagieren.

Doch damit nicht genug: Bereits vor Jungmanns Wechsel an das MPI für Biochemie arbeitete er in einem Team unter der Leitung von Peng Yin vom Wyss Institute und der Harvard Medical School in Boston, USA, an einer Erweiterung der Methode, um die Komplexität der zellulären Vorgänge möglichst detailliert abzubilden.

Dafür ist nun mit der quantitativen Analyse ein wesentlicher Schritt gelungen. Wie die Forscher berichten, kann jetzt dank qPAINT erstmals auch die Anzahl der nachgewiesenen Moleküle präzise bestimmt werden. Dafür wird die Bindungsstärke der DNA-Stränge gezielt justiert. Sie ist so eingestellt, dass sich die Nukleinsäure-Abschnitte nach einer festgelegten Zeitspanne voneinander trennen. Dann sind sie frei für eine weitere Bindung, die den Farbstoff erneut zum Aufleuchten bringt. Abhängig von der Menge der Zielmoleküle kann sich dieser Zyklus aus Bindung und Trennung viele Male wiederholen – mit entsprechend häufigen Fluoreszenzsignalen.

Aus der Frequenz der molekularen Morsezeichen lässt sich mit Hilfe von qPAINT die exakte Anzahl der Moleküle in der Zelle errechnen, die jeweils zusammenwirken. Die Wissenschaftler hoffen, dass das neuartige Verfahren in viele Forschungsbereiche Einzug halten wird, auch weil es kostengünstiger als andere hochaufgelöste mikroskopische Ansätze ist.

„Die genaue Anzahl spezifischer Moleküle ist bei vielen biologischen Prozessen und auch bei krankhaften Veränderungen wichtig“, sagt Jungmann, der als einer der beiden Erstautoren der Studie genannt ist. „Bei vielen Störungen fallen Moleküle nicht ganz aus, sondern liegen in nur leicht veränderter Menge vor.“

Originalpublikation:
R. Jungmann, M. S. Avendaño, M. Dai, J. B. Woehrstein, S. S. Agasti, Z. Feiger, A. Rodal & P. Yin: Quantitative super-resolution imaging with qPAINT using transient. Nature Methods, März 2016
DOI: 10.1038/nmeth.3804

Kontakt:
Dr. Ralf Jungmann
Molekulare Bildgebung und Bionanotechnologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: jungmann@biochem.mpg.de
www.biochem.mpg.de/jungmann

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

http://www.biochem.mpg.de – Webseite des Max-Planck-Institutes für Biochemie
http://www.biochem.mpg.de/jungmann – Webseite der Forschungsgruppe „Molekulare Bildgebung und Bionanotechnologie“ (Ralf Jungmann)

Media Contact

Dr. Christiane Menzfeld Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Die Gewebe-Spalter

Mit dem TissueGrinder – einer automatisierten Miniatur-Mühle für empfindliches Zellgewebe – lassen sich lebende Zellen aus einer Gewebeprobe herauslösen. Die Technik wurde am Fraunhofer IPA entwickelt. Eine Ausgründung bringt jetzt…

Energie System 2050: Lösungen für die Energiewende

Als Beitrag zum globalen Klimaschutz muss Deutschland den Einsatz fossiler Energieträger rasch und umfassend minimieren und das Energiesystem entsprechend umbauen. Wie und mit welchen Mitteln das am besten gelingen kann,…

Forscher*innen entdecken neue Maiskrankheit

Der Schutz der Kulturpflanzen vor Schädlingen und Krankheiten ist eine essenzielle Voraussetzung für die sichere Versorgung mit Lebensmitteln. Etwa 95 Prozent der Lebensmittel stammen aus konventioneller Landwirtschaft, die zur Gesunderhaltung…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close