Wenn Licht auf winzige Metallstrukturen trifft

Wenn Licht auf eine metallische Nanostruktur trifft, kann es darin Wellen in der Dichte der Elektronen anregen. Durch diese Dichtewellen wirkt die Nanostruktur dann wie eine Antenne für Licht – ähnlich wie herkömmliche Antennen in Radios oder Mobiltelefonen für langwelligere Strahlung.

Bei den im Alltag eingesetzten Antennen sind die Dichteänderungen und die damit verbundenen elektrischen Felder meist klein. Nicht so bei der Nanoantenne, die Forscher aus Karlsruhe und Houston nun entwickelt haben: Zwei Metallspitzen sind auf der Nanometerskala voneinander getrennt, das heißt, sie liegen weniger als ein Hunderttausendstel der Dicke eines menschlichen Haares auseinander. „So wird die Energie in der Lichtwelle auf ein winziges Volumen fokussiert, was enorme elektrische Felder hervorruft und ganz neue Anwendungen ermöglicht“, berichtet der Physiker Professor Gerd Schön vom Center for Functional Nanostructures (CFN) des KIT. Allerdings war es bisher schwierig, die erhöhte Feldstärke im Experiment direkt nachzuweisen.

Einer internationalen Forschergruppe ist dies nun gelungen: Der Physiker Dr. Fabian Pauly, Leiter einer Nachwuchsgruppe am Institut für Theoretische Festkörperphysik des KIT, und sein Mitarbeiter Falco Hüser sowie der ehemalige KIT-Forscher Juan Carlos Cuevas, heute Professor an der Autonomen Universität Madrid, haben mit theoretischen Untersuchungen die praktischen Experimente von Professor Douglas Natelson und Daniel R. Ward von der Rice University in Houston begleitet. In einer Probe, in der zwei metallische Spitzen durch einen weniger als einen Nanometer großen Spalt voneinander getrennt sind, maßen die Forscher die Feldstärke und fanden dabei Erhöhungen von mehr als einem Faktor tausend. Dies erreichten sie durch eine geschickte Kombination von optischer Gleichrichtung und hochempfindlichen Leitwertmessungen.

Messungen und Ergebnisse zeigen die Möglichkeiten und Grenzen von metallischen Nanoantennen für Licht – sogenannten plasmonische Antennen – für die spektroskopischen Untersuchungen von Oberflächen, für chemische, biologische und medizinische Sensoren, aber auch für die Grundlagenforschung zur Wechselwirkung von Licht und Materie auf der Nanometerskala. Mit ähnlichen Themen der Nanooptik sind derzeit verschiedene Forschergruppen des KIT in weiterführenden theoretischen und experimentellen Studien befasst.

Literatur
Daniel R. Ward, Falco Hüser, Fabian Pauly, Juan Carlos Cuevas, and Douglas Natelson: Optical rectification and field enhancement in a plasmonic nanogap. Nature Nanotechnology, published online 19 September 2010 | doi: 10.1038/nnano.2010.176

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Monika Landgraf
Pressestelle
Tel.: +49 721 608-8126
Fax: +49 721 608-3658
E-Mail: monika.landgraf@kit.edu

Media Contact

Dr. Elisabeth Zuber-Knost idw

Weitere Informationen:

http://www.kit.edu

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Schwarzhalsige Kamelhalsfliege ist „Insekt des Jahres 2022“

Heute wurde die Schwarzhalsige Kamelhalsfliege zum „Insekt des Jahres 2022“ gekürt. Das Kuratorium unter dem Vorsitz von Prof. Dr. Thomas Schmitt, Senckenberg Deutsches Entomologisches Institut in Müncheberg, wählte das Tier…

Abbau von 3D-Proteinstrukturen: Als Öse eingefädelt

Ein Eiweiß in unserem Körper kennt den alten Handarbeitstrick: Anstatt das Garn vom Ende her ins Öhr zu fädeln, kann es leichter sein, eine Schlaufe hindurchzuführen. Auf diese Weise arbeitet…

Mikrobatterie für Halbleiterchips

Forschungsergebnisse über einkristallines Silizium als Batteriebestandteil. In der Mikroelektronik weiß man: je kleiner, effizienter und mobiler Mikrochips sind, umso vielfältiger sind die Anwendungen. Professor Michael Sternad von der Technischen Hochschule…

Partner & Förderer