Leuchtende Miniatursonden für die hochauflösende Mikroskopie

Die hochauflösende Methode basiert auf dem Schlüssel-Schloss-Prinzip: Dazu wird das zu beobachtende Protein mit einer sehr kleinen Sonde, einem Histidin-Tag, fusioniert. An diesen bindet spezifisch das fluoreszenzmarkierte Molekül tris Nitrilotriessigsäure (trisNTA). Da beide Teile der Sonde extrem klein sind, rückt die fluoreszierende Markierung sehr nahe an das Protein. Die Entfernung beträgt nur zwei Nanometer (zwei milliardstel Meter), was rund zehnmal näher ist als bei konventioneller Antikörpermarkierung.

Die auf den Namen SLAP („Small LAbeling Pair“) getaufte Technik wurde in enger Zusammenarbeit zwischen den Gruppen um die Professoren Mike Heilemann (Institut für Physikalische und Theoretische Chemie) und Robert Tampé (Institut für Biochemie) an der Goethe-Universität entwickelt und in hochauflösender Fluoreszenz-Mikroskopie angewendet.

Mit dieser Technik, die 2014 mit dem Nobelpreis für Chemie honoriert wurde, kann man – dank der trickreichen Umgehung der bisherigen Auflösungsgrenze – einzelne Proteine und Moleküle sichtbar machen. So konnten beispielsweise mit SLAP markierte Bestandteile des Zellskeletts mit einer Auflösung von 40 Nanometern dargestellt werden.

„Der große Vorteil dieser Methode zeigte sich bei der Markierung von Komponenten der Antigen-Prozessierung“, erläutert Prof. Tampé. Diese essentielle Maschinerie des adaptiven Immunsystems sorgt dafür, dass Fragmente von Erregern, etwa Viren, auf der Zelloberfläche präsentiert werden. Dadurch werden infizierte Zellen vom Immunsystem als solche erkannt und eliminiert. Dank der neuen SLAP-Markierungsmethode kombiniert mit der hochauflösenden Mikroskopie konnte die Größe dieser Proteinkomplexe nun auf etwa 50 Nanometer eingegrenzt werden.

„Jetzt wissen wir, dass der gleiche Komplex durch die konventionelle Markierung mit Antikörpern künstlich vergrößert dargestellt wurde“, fügt Prof. Heilemann hinzu.

Da die SLAP-Markierungsmethode leicht anwendbar ist, sind die Frankfurter Forscher überzeugt, damit auch auf längere Sicht einen Beitrag zur genaueren Darstellung von krankheitsrelevanten zellulären Prozessen geleistet zu haben.

Publikation: Wieneke R, Raulf A, Kollmannsperger A, Heilemann M, Tampé R (2015) SLAP: Small labeling pair for single-molecule super-resolution imaging. Angew Chem 127:10354–10357.

Ein Bild zum Download anzufordern unter: hardy@pvw.uni-frankfurt.de

Bildtext: Beobachtung von einzelnen Histidin-markierten Zytoskelletmolekülen mit Hilfe der Super-Resoltuion Mikroskopie (dSTORM). Links ein markiertes Aktin (Zytoskelett-Bestandteil), rechts zwei Vergrößerungen.

Informationen: Prof. Mike Heilemann, Institut für Physikalische und Theoretische Chemie, Campus Riedberg, Tel: (069) 798-29736, Heilemann@chemie.uni-frankfurt.de.
Prof. Robert Tampé, Institut für Biochemie, Campus Riedberg, Tel: (069) 798-29475, tampe@em.uni-frankfurt.de

Media Contact

Dr. Anne Hardy idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-frankfurt.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Analyse von Partikeln des Asteroiden Ryugu liefert überraschende Ergebnisse

Eine kleine Landekapsel brachte im Dezember 2020 Bodenpartikel vom Asteroiden Ryugu zur Erde – Material aus den Anfängen unseres Sonnensystems. Gesammelt hatte die Proben die japanische Raumsonde Hayabusa 2. Geowissenschaftler…

Kollision in elf Millionen Kilometern Entfernung

Die im letzten Jahr gestartete NASA-Raumsonde DART wird am 27. September 2022 um 1.14 Uhr MESZ in elf Millionen Kilometer Entfernung von der Erde erproben, ob der Kurs eines Asteroiden…

Wie die Erderwärmung astronomische Beobachtungen beeinträchtigt

Astronomische Beobachtungen mit bodengebundenen Teleskopen sind extrem abhängig von lokalen atmosphärischen Bedingungen. Der menschgemachte Klimawandel wird einige dieser Bedingungen an Beobachtungsstandorten rund um den Globus negativ beeinflussen, wie ein Forschungsteam…

Partner & Förderer