Katalysator hält Früchte länger frisch

Ein Katalysator aus Platin-Nanopartikel auf einem mesoporösen Siliciumdioxid-Träger hält Obst länger frisch. (c) Wiley-VCH<br>

Reifende Früchte, Gemüse und Blumen setzen Ethylen frei, das als Pflanzenhormon wirkt. Ethylen beschleunigt die Reifung, unreife Früchte beginnen ebenfalls zu reifen – und rasch sind Obst oder Gemüse verdorben, Blumen verwelkt. Japanische Wissenschaftler stellen in der Zeitschrift Angewandte Chemie jetzt ein neues Katalysatorsystem vor, das Ethylen rasch und vollständig abbaut. In Vertriebslagern könnte es die Luft ethylenfrei und so die verderblichen Produkte länger frisch halten.

Ethylen ist nicht nur ein Ausgangsprodukt der chemischen Industrie, sondern steuert als Pflanzenhormon viele physiologische Prozesse, wie die Reifung von Früchten und das Aufblühen und Verwelken von Blüten. Jeder kennt das Beispiel von Bananen in einer Plastiktüte, die rascher nachreifen als unverpackte. Eine solche Reifebeschleunigung findet sogar im Kühlschrank bei Temperaturen um 0 °C statt.

Entsprechend wichtig ist es für den Großhandel, bei der Lagerung von Obst, Gemüse und Blumen Spuren von Ethylen aus Lagern und Kühlräumen zu entfernen. Bisherige biotechnologische Methoden sind teuer, aufwendig oder wenig effektiv. Auch die Suche nach einem geeigneten Katalysator für eine katalytische Oxidation von Ethylen verlief bisher nicht besonders erfolgreich. Die besondere Schwierigkeit ist die niedrige Temperatur, bei der das Verfahren laufen soll.

Atsushi Fukuoka und seine Kollegen von der Hokkaido University haben verschiedene Edelmetalle in Kombination mit unterschiedlichen Trägermaterialien getestet, um einen wirksameren Katalysator zu entwickeln. Und sie waren erfolgreich: Platin-Nanopartikel auf einem Träger aus einem speziellen mesoporösen Siliciumdioxid (MCM-41) zeigen eine sehr hohe Aktivität für die Ethylenoxidation bei 0 bis 20 °C. Bei einer Konzentration von 50 ppm Ethylen wurde bei 0 °C ein Umsatz von mehr als 99,8 % erreicht, ein bisher unerreicht hoher Wert, der auch über längere Zeiträume oder bei mehrmaligem Einsatz stabil bleibt.

Der Katalysator wird hergestellt, indem das Trägermaterial mit einer wässrigen Lösung eines Platinsalzes 18 Stunden gerührt, getrocknet, erst unter Sauerstoff und anschließend unter Wasserstoff erhitzt wird. In den großen Poren des Siliciumdioxid-Materials entstehen dabei ca. 2,4 nm große Platin-Partikel. Diese Partikelgröße, zusammen mit dem Effekt des Siliciumdioxids, scheint für die Reaktion besonders günstig zu sein.

Vermutlich reagieren Ethylen (C2H4) und Sauerstoff an diesem Katalysator zunächst rasch zu Formaldehyd (HCHO), der am Platin adsorbiert und dort hauptsächlich zu Kohlenmonoxid (CO) und Wasserstoffspezies zersetzt wird, die wiederum mit Sauerstoffspezies zu Kohlendioxid und Wasser weiterreagieren. Als Nebenprodukt entsteht eine kleine Menge Ameisensäure. Was dem neuen Katalysatorsystem seine besonders hohe Aktivität verleiht, ist die mühelose Oxidation von CO zu CO2 an Platin auf Siliciumdioxidträgern. Die genauen Details des Reaktionsmechanismus werden derzeit untersucht.
Angewandte Chemie: Presseinfo 18/2013

Autor: Atsushi Fukuoka, Hokkaido University (Japan), http://www.cat.hokudai.ac.jp/fukuoka/english.html

Permalink to the article: http://dx.doi.org/10.1002/ange.201300496

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Media Contact

Dr. Renate Hoer GDCh

Weitere Informationen:

http://presse.angewandte.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Brückenbau der Zukunft

Ein Team des Fachbereichs Konstruktiver Ingenieurbau an der HTWD erforscht modulare Fertigteilsysteme, um Brücken schneller, kostengünstiger und nachhaltiger zu errichten. Zahlreiche Brückenbauwerke in ganz Deutschland sind derzeit in einem schlechten…

Intelligente Kamerasysteme

HKA-Forschungskooperation mit Mercedes-Benz für autonomes Fahren der nächsten Generation. Im Mittelpunkt steht die Weiterentwicklung der komplexen Kameratechnologien im Neuromorphic Computing. Über die Kooperation im Projekt EVSC (Event Vision Stream Compres­sion)…

Digitaler Zwilling zeigt den Wald in 100 Jahren

Modell berechnet große Waldflächen bis auf den Einzelbaum genau. Der Wald der Zukunft wird mit anderen Bedingungen zurechtkommen müssen als der von heute. Deshalb ist es laut Forschenden der Technischen…