Grazer Chemiker entwickeln umweltfreundliches Verfahren zur Herstellung des Grundbausteins für Nylon

4,2 Millionen Tonnen des Polymerbausteins epsilon-Caprolactam werden jährlich produziert, um damit Nylon-6 herzustellen. Ausgangsbasis dafür ist Erdöl. Bei der Erzeugung kommen konzentrierte Säuren zur Anwendung und es fallen giftige Abfallprodukte an.

Am Institut für Chemie der Karl-Franzens-Universität Graz hat nun ein Team unter der Leitung von Univ.-Prof. Dr. Wolfgang Kroutil eine Lösung gefunden, wie sich ein alternativer Nylonbaustein umweltfreundlicher und gleichzeitig kosten- und ressourcensparender produzieren lässt.

„Wir haben einen Reaktionsweg konstruiert, bei dem unter Einsatz von sechs verschiedenen Enzymen der Polymerbaustein entsteht“, erklärt Kroutil. Die Biokatalysatoren lösen eine Kaskadenreaktion aus – sechs Reaktionen, die alle gleichzeitig in einem einzigen Gefäß ablaufen.

„Der große Vorteil der neuen Methode ist, dass deutlich weniger Abfall- und Nebenprodukte entstehen und vor allem der Einsatz konzentrierter Säuren vermieden werden kann“, so Kroutil. Während im herkömmlichen Verfahren Wasserstoffperoxid als Reaktionsmittel verwendet wird, kommt die Biokatalyse in diesem Fall mit Sauerstoff und Ammoniak aus.

Die benötigten Enzyme stammen aus verschiedenen ungefährlichen Bakterien, von denen fünf überall in der Umwelt zu finden sind und eines in heißen Quellen vorkommt. Ein weiterer Vorteil des neuen Verfahrens: Unter Anwendung der Biokatalyse kann der Nylon-Baustein sowohl aus Erdöl als auch auf Basis nachwachsender Rohstoffe hergestellt werden.

Industriepartner der Grazer ChemikerInnen ist das deutsche Unternehmen Evonik, das die neue Methode bereits international zum Patent angemeldet hat.

Die Entwicklung ist das Ergebnis von Forschungen aus dem mittlerweile abgeschlossenen EU-Projekt AMBIOCAS. Einige Mitarbeiter aus diesem Projekt sind jetzt beim acib – Austrian Center of Industrial Biotechnology in Graz tätig.

Publikation:
Introducing an In Situ Capping Strategy in Systems Biocatalysis To Access 6-Aminohexanoic acid
Johann H. Sattler, Michael Fuchs, Francesco G. Mutti, Barbara Grischek, Philip Engel, Jan Pfeffer, John M. Woodley und Wolfgang Kroutil
Angewandte Chemie International Edition, Volume 53, Issue 51, December 15, 2014. DOI: 10.1002/anie.201409227
http://han.uni-graz.at/han/3966/onlinelibrary.wiley.com/doi/10.1002/anie.201409227/abstract

Kontakt:
Univ.-Prof. Dr. Wolfgang Kroutil
Institut für Chemie der Karl-Franzens-Universität Graz, Österreich
Tel.: 0043 (0)316/380-5350
E-Mail: wolfgang.kroutil@uni-graz.at

Media Contact

Gudrun Pichler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-graz.at

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Intermolekulare Schwingungen öffnen Kanäle für ultraschnelle Singulettexzitonenspaltung

Die Suche nach leistungsstarken neuen Materialien zur Gewinnung von Solarenergie ist ein wichtiger Forschungsschwerpunkt weltweit. Ein solches Material ist Pentacen, da es sich durch seine ultraschnelle „Singulettexzitonenspaltung“ auszeichnet – einen…

Mehr Stabilität für magnetische Knoten

Kieler Physikteam findet neuen Mechanismus zur Stabilisierung von Skyrmionen Skyrmionen, winzige magnetische Wirbel, die in Materialien entstehen können, sind vielversprechend für neuartige elektronische Bauelemente oder magnetische Datenspeicher. Hier könnten sie…

Pflanzenerbgut mit hoher Auflösung entpuzzeln

Die Aufschlüsselung insbesondere eines pflanzlichen Genoms ist sehr aufwändig und fehlerträchtig. Grund ist, dass alle Chromosomen in mehreren, sehr ähnlichen Kopien vorliegen. Ein Forschungsteam von Bioinformatikern der Heinrich-Heine-Universität Düsseldorf (HHU)…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close