Gewebe schützen ihre DNA bei mechanischer Belastung

Dehnung von Geweben führt zu Faltenbildung der Zellkerne und zur Neuanordnung der DNA. Max-Planck-Institut für Biologie des Alterns

Im täglichen Leben werden Gewebe wie zum Beispiel Haut und Muskeln werden im Alltag gedehnt, gezogen und gestaucht – und das, ohne dass die Zellen oder die DNA geschädigt werden.

Ein Forschungsteam unter der Leitung von Sara Wickström, die am Max-Planck-Institut für Biologie des Alterns und dem Exzellenscluster CECAD an der Universität zu Köln sowie dem Helsinki-Institut für Biowissenschaften an der Universität Helsinki forscht, hat nun entdeckt, dass sich die Zellen vor solchen Belastungen schützen, indem sie nicht nur die Zellkerne verformen, sondern auch das genetische Material selbst aufweichen.

Der Schutz des genetischen Codes innerhalb unserer DNA ist entscheidend für die menschliche Gesundheit. Mutationen in der DNA führen zu einer Vielzahl von Krankheiten, wie z.B. Entwicklungsstörungen oder Krebs.

„Die meisten unserer Gewebe enthalten gewebespezifische Stammzellen. Das sind langlebige Zellen, deren Funktion für die Gewebefunktion und -erhaltung entscheidend ist. Aufgrund ihrer langen Lebensdauer ist es entscheidend, dass das Genom dieser Zellen wirksam vor Mutationen geschützt wird, um Krankheiten wie Krebs vorzubeugen“, sagt Michele Nava, der leitende Wissenschaftler der Studie.

„Es ist viel über die Rolle von Chemikalien und Bestrahlung bei der Erzeugung von DNA-Schäden bekannt, aber wie mechanische Kräfte die DNA schädigen und welche Mechanismen existieren könnten, um unsere Zellen vor diesen Schäden zu schützen, war bisher nicht bekannt“, erklärt Nava.

Zellkern und DNA organisieren sich aufgrund mechanischer Kräfte um

Um zu untersuchen, wie die DNA in Stammzellen auf mechanische Verformung reagiert, setzten Nava, Miroshnikova und Kollegen ein spezielles mechanisches Gerät ein, um Haut- und Muskelstammzellen einer ähnlichen mechanischen Dehnung auszusetzen, wie sie im Inneren des Gewebes auftreten würden.

Infolge der Dehnung werden sowohl die Zellkerne als auch die DNA neu organisiert, verändern aber auch ihre mechanischen Eigenschaften und werden weicher.

„Wir können die mechanischen Eigenschaften der DNA einfach dadurch verändern, dass wir mechanische Kräfte auf die Stammzellen ausüben. Wenn wir diese Veränderung experimentell verhindern, wird die DNA der Stammzellen geschädigt. Dies deutet darauf hin, dass wir einen wichtigen Schutzmechanismus entdeckt haben“, sagt Jekaterina Miroshnikova, die die Studie zusammen mit Nava und Wickström leitete.

Als Nava, Miroshnikova und ihre Kollegen die Dehnungsreaktion von Stammzellen genauer untersuchten, stellten sie fest, dass sich das gesamte Gewebe bei längerer mechanischer Dehnung nach der Kraftrichtung ausrichtet. Diese Orientierung verhindert eine Verformung des Zellkerns und seiner DNA und ermöglicht es den Zellen, ihren ursprünglichen Zustand wiederherzustellen. Diese Neuorientierung dient somit als langfristiger Schutz vor mechanischer Belastung.

Krebszellen zeigen eine gestörte Reaktion auf Dehnung

Die Forschenden stellten auch fest, dass Krebszellen weniger empfindlich auf mechanische Dehnung reagierten als gesunde Stammzellen. Dies ist auf Unterschiede in der Konzentration wichtiger Kernproteine zurückzuführen.

„Zentrale Merkmale für Krebs sind also, dass sie häufig mutieren und unempfindlichgegenüber äußeren Faktoren sind. Ein wichtiges zukünftiges Ziel des Labors ist es, zu verstehen, wie Defekte in diesem neu entdeckten Signalweg die Krebsbildung fördern könnten und wie Krebsarten die Mechanik ausnutzen könnten, um den Kontrollmechanismen des Gewebes zu entgehen“, sagt Sara Wickström.

Sara Wickström, PhD, Max-Planck-Institut für Biologie des Alterns, Köln und Helsinki Institute of Life Science, University of Helsinki, Finnland, sara.wickstrom@helsinki.fi, +358 2941 25640

Michele M. Nava, Yekaterina A. Miroshnikova, Leah C. Biggs, Daniel B. Whitefield, Franziska Metge, Jorge Boucas, Helena Vihinen, Eija Jokitalo, Xinping Li, Juan Manuel García Arcos, Bernd Hoffmann, Rudolf Merkel, Carien M. Niessen, Kris Noel Dahl, and Sara A. Wickström
Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage
Cell, April 2020

http://www.age.mpg.de
https://linkinghub.elsevier.com/retrieve/pii/S0092867420303457

Media Contact

Dr. Maren Berghoff Max-Planck-Institut für Biologie des Alterns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Hybride Strom-Wärme-Erzeugung

Neuartiges Parabolrinnen-Solarmodul entsteht an TU Graz. Mittels Hohlspiegel auf Photovoltaik-Zellen gebündelte Sonnenstrahlen liefern nicht nur Strom, sondern auch thermische Energie zum Heizen oder Kühlen. Drei technologische Innovationen verringern die Kosten…

Geheimnissen unserer Galaxie auf der Spur

Benachbarte Sternhaufen bewegen sich als Welle. Neue Ergebnisse deuten darauf hin, dass es keine signifikante Menge an dunkler Materie in unserer Nachbarschaft gibt. Erst vor wenigen Jahren entdeckte ein internationales…

Innovative Computertomographie

…verbessert Beurteilung der koronaren Herzkrankheit. Studie der Universitätsmedizin Mainz zeigt: Schweregrad der Erkrankung bei über 50 Prozent der Patient:innen mit Standardverfahren zu hoch eingestuft. Forschende der Universitätsmedizin Mainz haben gezeigt,…

Partner & Förderer