Flexibilität statt Perfektion hilft bei der Erregerabwehr

Lymphknoten einer infizierten Maus. Die verschiedenfarbigen Cluster sind Keimzentren mit unterschiedlichen Dominanz-Leveln © Gabriel D. Victora

Wenn ein Fremdstoff in den Körper eindringt, werden Antikörper gebildet, die den Eindringling anhand eines bestimmten Stoffes – dem Antigen – erkennen und bekämpfen. Während der Abwehrreaktion, werden Gedächtniszellen gebildet. Diese sorgen dafür, dass bei einem erneuten Auftreten des Erregers schneller und stärker reagiert werden kann.

Einer in „Science“ veröffentlichten Studie von Wissenschaftler des Whitehead Institutes for Biomedical Research, Cambridge, USA und des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig, zufolge, ist es entgegen bisheriger Annahmen jedoch nicht so, dass ausschließlich nur Antikörper mit einem extrem passgenauen Schlüssel-Schloss-Prinzip für ein spezifisches Antigen gebildet werden.

Antikörper werden von einer bestimmten Art weißer Blutkörperchen, den B-Zellen oder B-Leukozyten, gebildet, die täglich durch unsere Lymphknoten patrouillieren und nach Pathogenen suchen. Wenn eine B-Zelle mit ihrem Rezeptor an ein Antigen bindet, wird diese Zelle entweder den halbwegs passenden Antikörper direkt produzieren oder sich an der Gründung eines Keimzentrums beteiligen. Keimzentren sind eine Ausbildungsstätte für Antikörper:

Die B-Zellen vermehren sich dort, diversifizieren ihre Antikörper durch Mutation und optimieren ihn durch Selektion. „Dadurch steigert sich über die Zeit die Affinität der Antikörper zu den Antigenen. Es bleiben quasi nur noch die effektivsten über. Diesen evolutionären Vorgang bezeichnet man als Affinitätsreifung“, sagt Michael Meyer-Hermann, Leiter der Abteilung „System-Immunologie“ am HZI.

Im Rahmen eines vom Human Frontiers Science Program geförderten Projekts wollten Meyer-Hermann und sein Kollege Gabriel Victora vom Whitehead Institute for Biomedical Research diese Theorie überprüfen und herausfinden, wie genau es zur Affinitätsreifung kommt.

Dazu kombinierten die Forscher Einzelzellsequenzierung mit Brainbow-Experimenten, einer in der Gehirn- und Entwicklungsforschung oft verwendete Methode. Darin werden die Mutterzellen mit zufälligen fluoreszierenden Proteinen gefärbt, diese geben sie dann an ihre Tochterzellen weiter.

„So lässt sich genau erkennen, welche Abstimmungslinie die Zellen haben und welche Gründerzellen ein Keimzentrum dominieren“, sagt Meyer-Hermann. „Nach dem bisherigen Erkenntnisstand gingen wir davon aus, dass nur wenige Zellen das Keimzentrum gründen und dass der starke Selektionsdruck zu einfarbigen Keimzentren führen sollte.“

Die Resultate der Sequenzierung waren verblüffend: „Bisher ging man von drei bis fünf Gründerzellen pro Keimzentrum aus. Wir haben jetzt gezeigt, dass es eher 100 sind“, sagt Meyer-Hermann. Die Brainbow-Experimente zeigten, dass die Keimzentren nicht so einfarbig werden wie gedacht. Neben einigen Zentren, die im Laufe des Antikörperselektionsprozesses einfarbig wurden, bestanden andere wiederum auch nach langer Zeit immer noch aus verschiedenen Farben.

In diesen Zentren gab es also keine Dominanz eines bestimmten, sondern eine Koexistenz von vielen verschiedenen Antikörpern.

Ein Grund dafür könnte sein, dass es nicht immer von Vorteil ist, sich perfekt auf einen Erreger einzustellen. Schließlich entwickeln sich die Erreger selbst auch ständig weiter. „Je spezifischer die Antikörper wirken, desto schlechter können sie auf Mutationen in den Pathogenen reagieren“, sagt Meyer-Hermann. „Eine gewisse Variabilität und Flexibilität könnte so entscheidend sein, um mit den sich ständig verändernden Pathogenen mitzuhalten“.

Langfristig könnten die Erkenntnisse bei der Entwicklung neuer Impfstoffe helfen, schließlich sind Antikörper eine entscheidende Grundlage für diese. „Wenn wir wüssten, was das Verhältnis von klonal dominanten und diversen Keimzentren beeinflusst, könnten wir in Impfprotokollen die Diversität der induzierten Antikörper an die Mutationsgeschwindigkeit des Erregers anpassen“, sagt Meyer-Hermann.

Originalpublikation:
Jeroen M.J. Tas, Luka Mesin, Giulia Pasqual, Sasha Targ, Johanne T. Jacobsen, Yasuko M. Mano, Casie S. Chen, Jean-Claude Weill, Claude-Agnès Reynaud, Edward P. Browne, Michael Meyer-Hermann, Gabriel D. Victora. Visualizing Antibody Affinity Maturation in Germinal Centers. Science. 2016 Feb 19. DOI: 10.1126/science.aad3439.

Über das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. www.helmholtz-hzi.de

http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/flexibili… – Pressemitteilung

Media Contact

Susanne Thiele Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer