Fledermäuse nutzen Polarisationsmuster zur Orientierung

Großes Mausohr beim Abflug. © MPI f. Ornithologie/ Leitner

Nun haben Forscher vom Max-Planck-Institut für Ornithologie in Seewiesen und von der Queen’s University Belfast zusammen mit Kollegen aus Israel ausgerechnet bei einer nachtaktiven Säugetierart, dem Großen Mausohr, die Fähigkeit zur Orientierung mit Hilfe von polarisiertem Licht entdeckt. Diese Fledermäuse nutzen das Polarisationsmuster im Abendhimmel, um ihren inneren Kompass zu kalibrieren.

Im Laufe der Evolution haben sich vielfältige Sinnesorgane entwickelt, die den einzelnen Arten vielfältige Möglichkeiten geben, ihre Umgebung wahrzunehmen. So können zum Beispiel manche Insekten, Fische und Vögel ultraviolettes Licht sehen. Die Wahrnehmung von polarisiertem Licht ist bislang nur bei wenigen Tiergruppen beobachtet worden, hauptsächlich bei Insekten, Vögeln und Reptilien.

Polarisiertes Licht entsteht durch die Streuung des Sonnenlichts in der Atmosphäre. Das dabei entstehende Polarisationsmuster dient vielen Tieren als Kompass. Bekannte Beispiele sind die Orientierung von Honigbienen und Zugvögeln mittels polarisierten Lichts.

Auch Menschen sind zu einem gewissen Grad fähig, polarisiertes Licht zu sehen: So genannte Haidinger Büschel erscheinen als diffuse, gelbliche Formen im Auge. Dass Säugetiere diese Sinneswahrnehmung auch nutzen können, war bislang noch nicht bekannt.

Dies hat nun ein internationales Team von Fledermausforschern um Stefan Greif vom Max-Planck-Institut für Ornithologie in Seewiesen bewiesen. Sie fanden heraus, dass das Große Mausohr (Myotis myotis) das polarisierte Licht der Abenddämmerung zur Kalibrierung ihres Orientierungssystems nutzt, das sich am Erdmagnetfeld der Erde ausrichtet.

Dazu fingen die Forscher 70 Mausohr-Weibchen in der Orlova Chuka-Höhle im Nordosten Bulgariens. Sie setzten einen Teil der Fledermäuse einer um 90 Grad verschobenen Polarisationsrichtung zum natürlichen Spektrum aus, der andere Teil der Tiere wurde in die gleichen Boxen, nur ohne Filter, gesetzt.

Die Tiere wurden in den Boxen an zwei verschiedene, der Ausgangsposition entgegen gesetzte Orte gebracht. Um die Flugroute der Tiere zu verfolgen, versahen die Forscher die Fledermäuse mit kleinen Sendern und ließen sie lange nach Einbruch der Dunkelheit frei.

Diejenigen Tiere, die bei Sonnenuntergang einem um 90 Grad verschobenen Polarisationsmuster ausgesetzt waren, flogen danach in eine Richtung, die um 90 Grad von der abwich, in welche die Kontrolltiere flogen.

Mit diesem einfachen Experiment konnten die Forscher erstmals zeigen, dass Fledermäuse das Polarisationsmuster im Abendhimmel nutzen, um ihren inneren Magnetkompass zur Orientierung zu kalibrieren. Wie genau dies funktioniert, ist allerdings noch unklar. “Weitere verhaltensphysiologische Studien sind nötig, um den genauen Mechanismus zu entschlüsseln“, sagt Stefan Greif, Erstautor der Studie.

Ansprechpartner

Stefan Greif

Max-Planck-Institut für Ornithologie, Seewiesen

Telefon: +49 8157 932-376

 

Originalpublikation

 
Stefan Greif, Ivailo Borissov, Yossi Yovel, Richard A. Holland
A functional role of the sky’s polarization pattern for orientation in the greater mouse-eared bat
Nature Communications, veröffentlicht online am 22.07.2014 (DOI: http://dx.doi.org/10.1038/ncomms5488)

Media Contact

Stefan Greif Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuer Zusammenhang zwischen Wasser und Planetenbildung entdeckt

Forschende haben Wasserdampf in der Scheibe um einen jungen Stern gefunden, genau dort, wo sich möglicherweise Planeten bilden. Wasser ist ein wichtiger Bestandteil des Lebens auf der Erde und spielt…

Kleine Zellpopulation mit großer Wirkung

Endothelzellen kleinster Gefäße erweisen sich als vielversprechendes therapeutisches Ziel bei Organfibrose. Krankhafte Ablagerung von Bindegewebe (Fibrose) ist eine Begleiterscheinung vieler chronischer Erkrankungen, die mittel- bis langfristig zum Organversagen führen kann….

Neuartige Wirkstoffe bieten Pflanzen Schutz vor Viren

Patentiertes Verfahren: Pflanzen lassen sich mit speziell hergestellten Molekülen auf Basis von RNA oder DNA sicher vor Viren schützen. Das zeigt ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU) in einer neuen…

Partner & Förderer