Erreger der Legionärskrankheit zapfen Materialtransport von Immunzellen an

Wissenschaftler des Max-Planck-Instituts für molekulare Physiologie in Dortmund haben nun herausgefunden, wie Legionella die Zellen reprogrammiert, um das eigene Überleben zu sichern und sich zu verbreiten. Sie haben ein Protein untersucht, mit dem das Bakterium den Materialtransport innerhalb der Zellen zu den eigenen Gunsten umleiten kann. (Science, 22. Juli 2010)

Während einer Legionellen-Infektion werden die Bakterien von Immunzellen aufgenommen und im Zellinneren von einer Membran umgeben. Legionella schützt sich vor der Zerstörung, indem es Proteine freisetzt, die die menschliche Zelle umprogrammieren und für ihre eigenen Zwecke ausbeutet. Eines dieser Proteine ist DrrA. In vorangegangen Arbeiten konnte gezeigt werden, dass DrrA den Materialtransport in menschlichen Zellen in Richtung des Erregers umleitet. DrrA nutzt dafür sogenannte Rab-Proteine.

Rab-Proteine sind Schaltermoleküle, die Transportvesikel innerhalb der Zellen koordinieren. Sie sorgen damit dafür, dass diese membranumhüllten Bläschen zur richtigen Zeit an den richtigen Ort gelangen. Von den insgesamt 60 unterschiedlichen Rab-Proteinen funktioniert DrrA speziell das Rab1-Molekül für seine Zwecke um: Es deponiert Rab1 an der bakterienumgebenden Membran und aktiviert es. Dadurch wird der Materialtransport der menschlichen Zelle teilweise zum Vesikel mit dem Bakterium geleitet.

Eine strukturelle und biochemische Analyse von DrrA führte die Dortmunder Wissenschaftler zu einem überraschenden Ergebnis: DrrA kann Rab1 nicht nur aktivieren, es scheint den aktivierten Zustand auch verlängern zu können. Dazu blockiert DrrA das Abschalten von Rab1 und die notwendige Erkennungsstelle für regulatorische Proteine, indem es ein AMP-Molekül an Rab1 anlagert. „Die permanente Aktivierung von Rab1 durch DrrA könnte für einen verstärkten Materialtransport in Richtung Legionella sorgen und damit sein Überleben unterstützen“, folgert Aymelt Itzen vom Max-Planck-Institut für molekulare Physiologie.

„Die vorliegenden Ergebnisse sind ein Beispiel dafür, wie die molekulare Analyse bakterieller Erkrankungen nicht nur dabei helfen kann, die zellulären Mechanismen einer Infektion zu verstehen, sondern auch die Funktionsweise gesunder Zellen“, erklärt Roger Goody vom Dortmunder Max-Planck-Institut. Im Falle der Legionärskrankheit offenbart die Untersuchung des Bakterienproteins DrrA, wie ein menschliches regulatorisches Protein (Rab1) gezielt aktiviert und aktiv gehalten wird. Dies wirft die Frage auf, ob Legionella eine derartige Art der Regulation erfunden hat oder ob auch gesunde Zellen den Materialtransport auf eine ähnliche, bislang unbekannte Weise steuern können.

Originalarbeit:
The Legionella Effector Protein DrrA AMPylates the Membrane Traffic Regulator Rab1b
M.P. Mueller, H. Peters, J. Bluemer, W. Blankenfeldt, R.S. Goody, A. Itzen
Science, 22. Juli 2010
Kontakt:
Dr. Aymelt Itzen
Max-Planck-Institut für molekulare Physiologie, Dortmund
Tel.: 0231 / 133-2305
E-Mail: aymelt.itzen@mpi-dortmund.mpg.de
Prof. Roger Goody
Max-Planck-Institut für molekulare Physiologie, Dortmund
Tel.: 0231 / 133-2300
E-Mail: roger.goody@mpi-dortmund.mpg.de
Dr. Peter Herter, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Physiologie, Dortmund
Tel.: 0231 / 133-2500
E-Mail: peter.herter@mpi-dortmund.mpg.de

Media Contact

Dr Harald Rösch Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpi-dortmund.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mit einem Klick erfahren, wo es im Wald brennt

Satellitengestützte Erkennung von Waldbränden im Waldmonitor Deutschland jetzt online. Seit heute kann jedeR BürgerInnen verfolgen, ob und wo es in Deutschlands Wäldern brennt. Der Waldmonitor Deutschland [http://Waldmonitor-deutschland.de] zeigt jetzt frei…

Komplexe Muster: Eine Brücke vom Großen ins Kleine schlagen

Ein neue Theorie ermöglicht die Simulation komplexer Musterbildung in biologischen Systemen über unterschiedliche räumliche und zeitliche Skalen. Für viele lebenswichtige Prozesse wie Zellteilung, Zellmigration oder die Entwicklung von Organen ist…

Neuartige Membran zeigt hohe Filterleistung

Partikel aus alltäglichen Wandfarben können lebende Organismen schädigen. Für Wand- und Deckenanstriche werden in Haushalten meistens Dispersionsfarben verwendet. Ein interdisziplinäres Forschungsteam der Universität Bayreuth hat jetzt zwei typische Dispersionsfarben auf…

Partner & Förderer