Effizientere Biosolarzellen nach dem Vorbild der Natur

Volker Hartmann (rechts ) und Marc Nowaczyk haben die Grünlücke geschlossen. © RUB, Marquard

Abschauen bei Pflanzen, Algen und Bakterien

Biosolarzellen sind ein innovatives Konzept zur Umwandlung von Sonnenlicht in elektrische Energie. Zu ihrer Herstellung werden biologische Komponenten aus der Natur eingesetzt.

Das Herzstück sind sogenannte Photosysteme: große Proteinkomplexe, die in Pflanzen, Algen und Cyanobakterien für die Energiewandlung verantwortlich sind. Besonders Photosystem II, kurz PSII, spielt eine zentrale Rolle, da es Wasser als Elektronenquelle für die Stromerzeugung nutzen kann.

Zusammenarbeit klappte bisher im Reagenzglas nicht

„So einzigartig PSII jedoch ist, so limitiert ist auch sein Wirkungsgrad, da es nur einen Teil des Sonnenlichts nutzen kann“, erklärt Prof. Dr. Marc Nowaczyk, Leiter der Projektgruppe Molekulare Mechanismen der Photosynthese an der RUB.

Besonders im Bereich der sogenannten Grünlücke ist PSII nahezu inaktiv. „Cyanobakterien haben das Problem dadurch gelöst, dass sie spezielle Lichtsammelproteine, die Phycobilisomen, bilden, die auch dieses Licht nutzbar machen. In der Natur klappt die Zusammenarbeit, im Reagenzglas bisher noch nicht.“

Superkomplexe nutzen doppelt so viele Photonen der Grünlücke

In Kooperation mit der Arbeitsgruppe von Prof. Dr. Wolfgang Schuhmann an der RUB und der israelischen Forschungsgruppe um Prof. Dr. Noam Adir ist es Nowaczyks Team erstmals gelungen, eine Zweikomponenten-Bioelektrode herzustellen. Die besondere Schwierigkeit bestand in der funktionalen Interaktion der Multiproteinkomplexe, die zum Teil artübergreifend kombiniert wurden.

Mit kurzkettigen chemischen Quervernetzern, die die Proteine mit sehr geringem Abstand zueinander dauerhaft fixieren, konnten die Forscherinnen und Forscher diese Superkomplexe stabilisieren. Im nächsten Schritt brachten sie sie in geeignete Elektrodenstrukturen ein.

„Diese Herausforderung konnten wir durch maßgeschneiderte, dreidimensionale und zugleich transparente Elektroden in Kombination mit redoxaktiven Hydrogelen meistern“, sagt Dr. Volker Hartmann, Erstautor der Studie. Durch diesen Aufbau konnten – im Vergleich zu einem System ohne Lichtsammelkomplexe – doppelt so viele Photonen innerhalb der Grünlücke genutzt werden.

Vielversprechender Zwischenschritt

Der Zusammenbau von Proteinkomplexen im Reagenzglas gilt als vielversprechender Zwischenschritt bei der Entwicklung von biologischen Solarzellen. Er erlaubt es, die Vorzüge verschiedener Spezies in halbkünstlichen Systemen funktional zu verbinden. In Zukunft sollen insbesondere die Herstellung und Lebensdauer der biologischen Komponenten weiter verbessert werden.

Förderung

Die Arbeiten wurden gefördert vom Exzellenzcluster Ruhr Explores Solvation Resolv, der von der Deutschen Forschungsgemeinschaft (DFG) geförderten Graduiertenschule GRK 2341 Microbial Substrate Conversion (Micon), sowie über das Deutsch-Israelische Projekt Nano-engineered opto-bioelectronics with biomaterials and bio-inspired assemblies der DFG und der Israel Science Foundation.

Originalveröffentlichung

Volker Hartmann, Dvir Harris, Tim Bobrowski, Adrian Ruff, Anna Frank, Thomas Günther-Pomorski, Matthias Roegner, Wolfgang Schuhmann, Noam Adir, Marc M. Nowaczyk: Improved quantum efficiency in an engineered light harvesting/photosystem II super-complex for high current density biophotoanodes, in: Journal of Materials Chemistry A, 2020, DOI: 10.1039/D0TA03444D, https://pubs.rsc.org/en/Content/ArticleLanding/2020/TA/D0TA03444D#!divAbstract

Pressekontakt

Prof. Dr. Marc Nowaczyk

Lehrstuhl Biochemie der Pflanzen

Fakultät für Biologie und Biotechnologie

Ruhr-Universität Bochum

Tel.: +49 234 32 23657

E-Mail: marc.m.nowaczyk@rub.de

Prof. Dr. Marc Nowaczyk

Lehrstuhl Biochemie der Pflanzen

Fakultät für Biologie und Biotechnologie

Ruhr-Universität Bochum

Tel.: +49 234 32 23657

E-Mail: marc.m.nowaczyk@rub.de

Volker Hartmann, Dvir Harris, Tim Bobrowski, Adrian Ruff, Anna Frank, Thomas Günther-Pomorski, Matthias Roegner, Wolfgang Schuhmann, Noam Adir, Marc M. Nowaczyk: Improved quantum efficiency in an engineered light harvesting/photosystem II super-complex for high current density biophotoanodes, in: Journal of Materials Chemistry A, 2020, DOI: 10.1039/D0TA03444D, https://pubs.rsc.org/en/Content/ArticleLanding/2020/TA/D0TA03444D#!divAbstract

Media Contact

Meike Drießen idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues Wirkprinzip gegen Tuberkulose

Gemeinsam ist es Forschenden der Heinrich-Heine-Universität Düsseldorf (HHU) und der Universität Duisburg-Essen (UDE) gelungen, eine Gruppe von Molekülen zu identifizieren und zu synthetisieren, die auf neue Art und Weise gegen…

Gefahr durch Weltraumschrott

Neue Ausgabe von „Physikkonkret“ beleuchtet Herausforderungen und Lösungen für eine nachhaltige Nutzung des Weltraums. Die Deutsche Physikalische Gesellschaft (DPG) veröffentlicht eine neue Ausgabe ihrer Publikationsreihe „Physikkonkret“ mit dem Titel „Weltraumschrott:…

Wasserstoff: Versuchsanlage macht Elektrolyseur und Wärmepumpe gemeinsam effizient

Die nachhaltige Energiewirtschaft wartet auf den grünen Wasserstoff. Neben Importen braucht es auch effiziente, also kostengünstige heimische Elektrolyseure, die aus grünem Strom Wasserstoff erzeugen und die Nebenprodukte Sauerstoff und Wärme…

Partner & Förderer