Chemische Reaktionen in Echtzeit beobachten

Die Herstellung von synthetischem Erdgas aus CO2 und nachhaltig produziertem Wasserstoff wurde erstmals in Echtzeit zu beobachtet. EPFL

Infrarot (IR)-Thermografie wird eingesetzt, um die Temperatur von Menschen und Objekten mit hoher Präzision und ohne Beeinträchtigung des zu messenden Systems zu bestimmen.

Ein einzelnes Bild, das mit einer IR-Kamera aufgenommen wird, kann die gleiche Menge an Informationen wie hunderte bis Millionen von Temperatursensoren auf einmal erfassen.

Darüber hinaus können moderne IR-Kameras hohe Aufnahmefrequenzen von mehr als 50 Hz erreichen, was die Untersuchung dynamischer Phänomene mit hoher Auflösung ermöglicht.

Nun haben Schweizer Wissenschaftler einen Reaktor entwickelt, der mit Hilfe von IR-Thermografie dynamische Oberflächenreaktionen sichtbar machen und mit anderen schnellen Gasanalysemethoden korrelieren kann, um ein ganzheitliches Verständnis der Reaktion unter sich schnell ändernden Bedingungen zu erhalten.

Die Forschungsarbeiten wurden von Robin Mutschler und Emanuele Moioli am gemeinsamen EPFL-Empa-Labor von Andreas Züttel in Sion geleitet; die Schweizer Forscher arbeiteten mit Kollegen der Polytechnischen Universität Mailand zusammen.

Die Wissenschaftler wandten ihre Methode auf katalytische Oberflächenreaktionen zwischen Kohlendioxid (CO2) und Wasserstoff (H2) an, darunter auch die Sabatier-Reaktion.

Mit dieser lässt sich synthetisches Methan aus erneuerbarer Energie durch die Kombination von atmosphärischem CO2 und H2 aus der Wasserspaltung herstellen; sie ermöglicht somit die Synthese sogenannter e-Fuels – erneuerbarer synthetischer Treibstoffe mit ähnlichen Eigenschaften wie deren fossile «Vorbilder».

Auch bei der geplanten Methanherstellung im Mobilitätsdemonstrator «move» auf dem Empa-Campus in Dübendorf soll die Sabatier-Reaktion eingesetzt werden. Bei diesem chemischen Prozess wird ein Katalysator benötigt, um das relativ inerte CO2 zur chemischen Reaktion zu aktivieren.

Optimierte Reaktor- und Katalysatordesigns

Vor allem die Untersuchung dynamischer Reaktionsphänomene, die bei der Reaktionsaktivierung aus unterschiedlichen Ausgangszuständen des Katalysators auftreten, stand im Fokus der Forscher.

«Die Reaktion auf dem Katalysator wird durch eine hydrierte Oberfläche begünstigt, während eine Exposition mit CO2 den Katalysator vergiftet und eine schnelle Reaktionsaktivierung verhindert», erklärt Mutschler. Und Moioli ergänzt: «Dank dieses neuen Ansatzes konnten wir neue dynamische Reaktionsphänomene sichtbar machen, die noch nie zuvor beobachtet wurden.»

In ihrer Studie zeigten die Forscher erstmals in Echtzeit, wie der Katalysator arbeitet und auf Änderungen in der Zusammensetzung der Ausgangsgase reagiert.

Die Ergebnisse haben zu einem besseren Verständnis der genauen Reaktionsabläufe während der Aktivierungsphase geführt, was zu optimierten Reaktor- und Katalysatordesigns führen kann, um die Leistung dieser unter dynamischen Bedingungen ablaufenden Reaktorsysteme zu verbessern.

Dies ist von entscheidender Bedeutung, da erneuerbare Energie wie auch die Ausgangsstoffe für die Methansynthese typischerweise in wechselnden Mengen zur Verfügung stehen.

Daher müssen Reaktoren, die erneuerbare Energie in synthetische Brennstoffe umwandeln, an den Betrieb unter dynamischen Bedingungen angepasst werden. Die Studie wurde durch den Schweizerischen Nationalfonds (SNF) unterstützt.

Prof. Dr. Andreas Züttel
Joint Lab of EPFL and Empa, Sion
Tel. +41 21 695 82 10
andreas.zuettel@epfl.ch

R Mutschler, E Moioli, K Zhao, L Lombardo, E Oveisi, A Porta, L Falbo, CG Visconti, L Lietti, A Züttel; Imaging catalysis: Operando investigation of the CO2 hydrogenation reaction dynamics by means of infrared thermography; ACS Catalysis (2019); doi: 10.1021/acscatal.9b04475

https://www.empa.ch/web/s604/sabatier-thermographie

Media Contact

Rainer Klose Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Globale Erwärmung aktiviert inaktive Bakterien im Boden

Neue Erkenntnisse ermöglichen genauere Vorhersage des Kohlenstoffkreislaufs. Wärmere Böden beherbergen eine größere Vielfalt an aktiven Mikroben: Zu diesem Schluss kommen Forscher*innen des Zentrums für Mikrobiologie und Umweltsystemforschung (CeMESS) der Universität…

Neues Klimamodell

Mehr Extremregen durch Wolkenansammlungen in Tropen bei erhöhten Temperaturen. Wolkenformationen zu verstehen ist in unserem sich wandelnden Klima entscheidend, um genaue Vorhersagen über deren Auswirkungen auf Natur und Gesellschaft zu…

Kriebelmücken: Zunahme der Blutsauger in Deutschland erwartet

Forschende der Goethe-Universität und des Senckenberg Biodiversität und Klima Forschungszentrums in Frankfurt haben erstmalig die räumlichen Verbreitungsmuster von Kriebelmücken in Hessen, Nordrhein-Westfalen, Rheinland-Pfalz und Sachsen modelliert. In der im renommierten…

Partner & Förderer