Erstmals Erbgut einer Pflanze entschlüsselt


Veröffentlichung in ’Nature’ unter Beteiligung von Tübinger Forschern

Die unscheinbare Pflanze Arabidopsis thaliana – zu deutsch Ackerschmalwand – ist für Genetiker in der ganzen Welt eine Art Modellpflanze, deren Gene und ihre Funktion beispielhaft eingehend untersucht werden. Nun wurde das Erbgut der Ackerschmalwand und damit der ersten Pflanze überhaupt vollständig entziffert. An der Gensequenzierung waren seit 1996 in der Arabidopsis Genome Initiative (AGI) mehrere Forschungsinstitutionen beteiligt. Die Forschungsergebnisse werden in der heutigen Ausgabe der Zeitschrift Nature (908, 14.12.2000) in einer Gemeinschaftsarbeit zahlreicher Wissenschaftler veröffentlicht. An der Analyse der Gendaten haben auch Tübinger Forscher unter der Leitung von Prof. Gerd Jürgens vom Zentrum für Molekulare Biologie der Pflanzen (ZMBP) mitgearbeitet.

Der Entschlüsselung der Gene der Ackerschmalwand, die in ihrer Gesamtheit auch als Genom bezeichnet werden, war die Genomsequenzierung einiger Bakterien und mit dem Fadenwurm Caenorhabditis elegans und der Fruchtfliege Drosophila melanogaster auch zweier tierischer Lebewesen vorausgegangen. Aus dem HUGO-Projekt sind außerdem die Sequenzen der meisten menschlichen Gene bekannt. Das Erbgut oder Genom der Tiere und Pflanzen ist auf Chromosomen verteilt. Die Gene sind auf den Chromosomen angeordnet. Sie speichern eine Art Anleitung zur Herstellung von Eiweißen. Die zahlreichen verschiedenen Eiweiße erfüllen zum Beispiel beim Aufbau der Zelle, beim Energiestoffwechsel und der Abwehr von Krankheitserregern jeweils spezifische Funktionen.

Die Kerne der Zellen der Arabidopsis-Pflanzen enthalten jeweils fünf Chromosomen. Insgesamt haben die Forscher bei der Sequenzzierung rund 25 000 Gene gefunden. Die Entschlüsselung des Genoms hat eine lange Buchstabenfolge zum Ergebnis, die die verschiedenen Bausteine der Gene symbolisiert. Die Buchstabenfolge allein bietet den Forschern keine großen Erkenntnisse, wenn die Funktion der Eiweiße, für die sie stehen, nicht bekannt ist. Die Analyse der Daten, wie sie bei der Entzifferung des Arabidopsis-Genoms auch von der Tübinger Arbeitsgruppe geleistet wurde, bildet daher einen bedeutenden Teil der Forschungen. Wichtige Aufschlüsse zur Funktion unbekannter Gene bietet der Vergleich mit bekannten Genen anderer Lebewesen. Über spezielle Computerprogramme können strukturelle Ähnlichkeiten der neuen Gensequenzen mit bereits bekannten, in Datenbanken gespeicherten festgestellt werden. Häufig lässt sich dann die Bedeutung oder Funktion der unerforschten Gene vorhersagen.

In der Evolution haben sich die einzelligen Vorläufer der Tiere und Pflanzen frühzeitig voneinander getrennt. Nur die pflanzlichen Einzeller haben ein Bakterium eingemeindet, das Photosynthese trieb. Daraus ist der Chloroplast entstanden, der heute die Pflanzen befähigt, Sonnenlicht als Energiequelle zu nutzen. Der größte Teil des bakteriellen Erbguts ist später aus dem Chloroplasten in den Zellkern gewandert. Diese Erkenntnis wird durch die Genom-Analyse bestätigt: Ein erheblicher Teil des Pflanzenerbguts weist Ähnlichkeiten zu dem Genom photosynthetisch aktiver Bakterien auf. Pflanzenzellen unterscheiden sich auch sonst in der Organisation von tierischen Zellen, z.B. durch eine Zellwand, die ihre Beweglichkeit verhindert. Inwieweit sich solche Unterschiede in der genetischen Ausrüstung widerspiegeln, hat Prof. Jürgens zusammen mit früheren Mitarbeitern, die jetzt am Bioinformatik-Institut MIPS in München arbeiten, untersucht. Gemeinsam ist allen echten Zellen ein Zellgerüst und eine Maschinerie, mit der Proteine und andere Moleküle sortiert und zu ihren Bestimmungsorten in der Zelle transportiert werden. Auch Arabidopsis hat die dafür notwendige genetische Information. Unterschiedlich ist jedoch die Verbindung des Zellgerüsts zur Oberfläche der Zelle, und Arabidopsis fehlt offenbar die Information, die von Tieren her bekannten Verbindungsmoleküle herzustellen. Ebenfalls ganz anders ist die Zellteilung. Bei Tieren schnürt sich die Zelle von außen nach innen ein und trennt so die Tochterzellen voneinander. Pflanzenzellen hingegen bilden durch Verschmelzung von Membranvesikeln an einem speziellen Zellgerüst von innen nach außen die trennende Membran zwischen den Tochterzellen. Die Genomanalyse zeigt nun, dass Arabidopsis die Information für die Einschnürung fehlt. Umgekehrt hat Arabidopsis eine besondere genetische Information für die Verschmelzung der Membranvesikel.

Doch die Genomanalyse der Ackerschmalwand bot den Wissenschaftlern auch einige Überraschungen. Das Erbgut von Arabidopsis schien sich im Laufe der Entwicklung der Pflanze teilweise verdoppelt zu haben. Die beiden Kopien enthalten jedoch nicht exakt die gleichen Gene. Wie die Pflanze die Nutzung der parallelen Anleitungen organisiert, ist fraglich. Außerdem fand sich neben den tier- und bakterienähnlichen Genen ein hoher Anteil pflanzeneigener Gene. Von ihrer Erforschung erhoffen sich die Genetiker Erkenntnisse, die auch bei der gentechnischen Bearbeitung zum Beispiel von Getreidepflanzen für Verbesserungen eingesetzt werden können.

Nähere Informationen:

Prof. Gerd Jürgens
Zentrum für Molekularbiologie der Pflanzen
Entwicklungsgenetik
Auf der Morgenstelle 1
72076 Tübingen
Tel. 0 70 71/2 9788 87
Fax 0 70 71/29 57 97

Ansprechpartner für Medien

Michael Seifert idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Besser kleben im Leichtbau

Projekt GOHybrid optimiert Hybridverbindungen Leichtbau ist in der Mobilitätsbranche essentiell. Im Zuge der Mischbauweise mit Leichtmetallen und Faser-Kunststoff-Verbunden rücken hybride Klebverbindungen in den Fokus. Aufgrund der unterschiedlichen Wärmeausdehnungen der Materialien…

Benchmark für Einzelelektronenschaltkreise

Neues Analyseverfahren für eine abstrakte und universelle Beschreibung der Genauigkeit von Quantenschaltkreisen (Gemeinsame Presseinformation mit der Universität Lettland) Die Manipulation einzelner Elektronen mit dem Ziel, Quanteneffekte nutzbar zu machen, verspricht…

Solarer Wasserstoff: Photoanoden aus α-SnWO4 versprechen hohe Wirkungsgrade

Photoanoden aus Metalloxiden gelten als praktikable Lösung für die Erzeugung von Wasserstoff mit Sonnenlicht. So besitzt α-SnWO4 optimale elektronische Eigenschaften für die photoelektrochemische Wasserspaltung, korrodiert jedoch rasch. Schutzschichten aus Nickeloxid…

Partner & Förderer