Neue Hoffnung auf Malaria-Impfstoff

Kleiner Peptidring als Lebensretter?

In etwa hundert Ländern besteht derzeit Ansteckungsgefahr mit dem Parasiten Plasmodium falciparum, dem Erreger der bösartigsten Form der Malaria. Die Zahl der Todesopfer, die jährlich auf sein Konto gehen, wird auf 1,5 bis 2,7 Millionen geschätzt. Viele Plasmodienstämme sind bereits resistent gegen die zur Behandlung oder Prophylaxe gegebenen Mittel, die zudem gravierende Nebenwirkungen haben können. Ein Impfstoff, der den Menschen in den betroffenen Regionen wirksamen Schutz bieten könnte, ist nicht verfügbar. Neue Hoffnung schüren nun die Ergebnisse einer kolumbianisch-schweizer Forschungskooperation um Manuel E. Patarroyo.

Damit man gegen eine Infektionskrankheit immun wird, muss der Organismus Antikörper herstellen, die sich gegen die Erreger, z. B. Bakterien, Viren oder Parasiten, richten. Bei einer Impfung werden entweder Antikörper direkt zugeführt oder das Immunsystem zur Bildung von Antikörpern angeregt. Gegen Erkrankungen, die durch Parasiten hervorgerufen werden, konnte man bisher noch kein einziges Impfserum entwickeln.

Der Malaria-Erreger durchlebt einen sehr komplexen Lebenszyklus zwischen Mensch und Moskito. Beim Stich übertragen, nisten sich die Parasiten in der Leber ihres unfreiwilligen Gastgebers ein, reifen und werden ins Blut ausgeschwemmt. In den roten Blutkörperchen werden weitere Entwicklungsstadien durchlaufen. Die Blutkörperchen werden zerstört – es kommt zum Fieberschub. Die dabei freigesetzten Parasiten befallen erneut rote Blutkörperchen, ein neuer Fieberschub steht an.

Um in die Blutkörperchen zu gelangen, müssen die Malaria-Erreger zunächst an deren Hülle andocken – mit dem Protein MSP-1, das sie auf ihrer Oberfläche tragen. Das könnte ihr Schwachpunkt sein: Patarroyo und seine Mitstreiter haben
eine kurze definierte Peptidsequenz herstellen können, die der Bindungsstelle von MSP-1 sehr ähnlich ist. Der entscheidende Kniff: Aus dieser Peptidkette bastelten sie ringförmige Varianten. „Zyklische Peptide sind stabiler als Ketten, die im Serum sehr schnell durch Enzyme abgebaut werden,“ erläutert Patarroyo. „Durch den Ringschluss kann das Peptid außerdem in der gewünschten räumlichen Struktur fixiert werden.“

Den Forschern gelang es, Affen mit einem der zyklischen Peptide zu immunisieren: Die Tiere entwickelten Antikörper. Und diese Antikörper reagieren nicht nur auf ihr ursrpüngliches Ziel, den Peptidring, sondern sie heften sich auch an das Oberflächenprotein MSP-1 der Malaria-Erreger. Der Befund lässt hoffen, dass auf diesem Wege endlich ein Impfstoff gegen Malaria entwickelt werden kann.


Kontakt:

Prof. Dr. M. E. Patarroyo
Fundaciòn Instituto de Immunologia de Colombia
Diag. 53 No. 34-53
AA 33086 Bogotà
Colombia

Fax: (+57) 1-280-3999

E-Mail: elioy@inwind.it 
mepatarr@mail.com


Quelle: Angewandte Chemie 2001, 113 (14), 2701 – 2705
Hrsg.: Gesellschaft Deutscher Chemiker (GDCh)

Media Contact

Dr. Kurt Begitt idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen

Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und…

Rotation eines Moleküls als „innere Uhr“

Mit einer neuen Methode haben Physiker des Heidelberger Max-Planck-Instituts für Kernphysik die ultraschnelle Fragmentation von Wasserstoffmolekülen in intensiven Laserfeldern detailliert untersucht. Dabei nutzten sie die durch einen Laserpuls angestoßene Rotation…

Auf dem Weg zur fischfreundlichen Wasserkraft

In dem europaweiten Projekt „FIThydro“ unter Leitung der Technischen Universität München (TUM) haben Forscherinnen und Forscher in Zusammenarbeit mit Industriepartnern bestehende Wasserkraftwerke untersucht. Diese Ergebnisse nutzten sie, um neue Methoden…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close