Turbo im Gehirn

Mausnervenzelle in Kultur. Die rosa gefärbten Bereiche sind Synapsen, in denen Munc13-Proteine angereichert sind. <br>Bild: Max-Planck-Institut für experimentelle Medizin

Göttinger Max-Planck-Wissenschaftler haben molekularen Schlüsselmechanismus entdeckt, mit dem die Reaktionsfähigkeit des Gehirns geregelt wird

Während der Computerarbeit mal kurz einen Telefonanruf beantworten, schnell ein hupendes Auto lokalisieren, beim TV-Zappen zwischen Fußball und Krimi nicht völlig den Überblick verlieren oder einem anfliegenden Schneeball ausweichen – das alles sind für uns ganz alltägliche Fähigkeiten. Es ist für uns lebensnotwendig, auf extrem schnell wechselnde Umstände reagieren zu können. Damit das funktioniert, wir also auf Grund von Sinneseindrücken oder als Ergebnis gedanklicher Prozesse unser Verhalten abrupt ändern können, müssen die Schaltkreise aus Nervenzellen in unserem Gehirn sehr reaktionsfähig sein (Kurzzeitplastizität). Welche molekularen Mechanismen die Nervenzellen zu solchen Anpassungskünstlern machen, haben jetzt Forscher der beiden Göttinger Max-Planck-Institute für experimentelle Medizin und biophysikalische Chemie unter der Leitung der Neurobiologen Nils Brose und Christian Rosenmund entdeckt (Cell, 6. August 2004), möglicherweise ein Target für die medikamentöse Beeinflussung der Hirnleistung.

Nervenzellen kommunizieren miteinander an spezialisierten Zell-Zell-Kontakten, den Synapsen. Zuerst wird eine sendende Nervenzelle erregt und schüttet Botenstoffe, so genannte Neurotransmitter, aus. Diese Signalmoleküle gelangen dann zur nächsten Empfängerzelle und beeinflussen deren Aktivitätszustand. Die Transmitterausschüttung ist komplex und stark reguliert. Hauptakteure sind synaptische Vesikel, kleine Membran-umhüllte Bläschen, die mit Neurotransmittern beladen sind und diese durch Verschmelzung mit der Zellmembran freisetzen. Um nun jederzeit in der Lage zu sein, auf eine Stimulation mit der Freisetzung von Transmittern zu antworten, muss eine Nervenzelle in jedem ihrer synaptischen Enden eine bestimmte Menge „akut freisetzbarer“ Vesikel bereithalten. Die molekularen Grundlagen dieser „Vorratshaltung“ ist seit Jahren Gegenstand der Forschungsarbeiten von Brose und Rosenmund.

Dass es sich dabei nicht bloß um ein akademisches Problem handelt, erklärt Brose so: „Die Zahl der akut freisetzbaren Vesikel einer Synapse entscheidet über deren Zuverlässigkeit. Gibt es zu wenige davon und werden diese zudem noch zu langsam nachgeliefert, ermüdet die entsprechende Synapse bei dauerhafter Belastung sehr schnell. Das Gegenteil ist der Fall, wenn eine Synapse bei Belastung schnell weitere akut freisetzbare Vesikel nachliefern kann. Dann kann es sogar passieren, dass eine Synapse bei dauerhafter Aktivierung besser wird.“

Diese Anpassungsfähigkeit von Synapsen ist in fast allen Nervenzellen zu beobachten und wird als Kurzzeitplastizität bezeichnet. Sie ist für eine Vielzahl extrem wichtiger Hirnprozesse unverzichtbar: Ohne sie könnten wir keine Geräusche lokalisieren, und die Schnelligkeit und Flexibilität, mit der wir unser Verhalten ändern und unsere Aufmerksamkeit auf neue Ziele richten können, wäre dahin.

Brose und Rosenmund hatten bereits vor Jahren ein Protein mit dem kryptischen Namen Munc13 entdeckt, das für die Nachlieferung „akut freisetzbarer“ Vesikel an Synapsen unabdingbar ist. Ihre nun in der renommierten Fachzeitschrift „Cell“ veröffentlichten Daten demonstrieren, dass dieses Protein durch die Aktivität von Nervenzellen so reguliert wird, dass der Nachschub an Vesikeln dem jeweiligen Bedarf angepasst werden kann – ist die Zelle sehr aktiv, werden durch Munc13 viele neue freisetzbare Vesikel nachgeliefert, ist sie still, wird auch die Aktivität des Proteins herunterreguliert. Munc13-Proteine haben also eine Schlüsselfunktion bei der Kurzzeitplastizität.

„Doch das ist noch nicht alles“, meint Rosenmund, „wir haben außerdem auch den molekularen Mechanismus entschlüsselt, mit dem das alles geschieht.“ Als die Göttinger Hirnforscher mit ihren Arbeiten begannen, war über die Kurzzeitplastizität lediglich bekannt, dass die anhaltende Aktivität von Nervenzellen zur Anhäufung von Kalzium-Ionen im Zellinneren führt und diese dann auf unbekannte Weise die Transmitter-Freisetzungsrate erhöhen. Man wusste nicht, wie das die Kalzium-Ionen bewerkstelligen und auf welche Proteine sie einwirken. „Die Entdeckung des Kalziumsensors und dessen Zielproteins wurde von führenden Neurowissenschaftlern in der Vergangenheit schon als ’Heiliger Gral’ der synaptischen Plastizität bezeichnet“, scherzt Brose, „und wir haben ihn gefunden.“ Tatsächlich zeigen die Studien der beiden Göttinger Forscher, dass die sich während starker Nervenzellaktivität anhäufenden Kalzium-Ionen an ein Signalprotein namens Calmodulin anlagern. Der auf diese Weise entstandene Komplex aus Kalzium-Ionen und Calmodulin bindet und aktiviert dann Munc13.

„Wir glauben, dass wir den molekularen Schlüsselmechanismus der Kurzzeitplastizität entdeckt haben“, sagt Rosenmund. Das mag nicht so wertvoll sein, wie der wirkliche ’Heilige Gral’, aber wenn die beiden Göttinger mit der Interpretation ihrer Befunde wirklich recht haben, dann wäre Munc13 ein ideales pharmakologisches Ziel für die medikamentöse Beeinflussung der Gehirnleistung. „Das könnte schon sein“, gibt Brose zu, „aber das ist Zukunftsmusik.“ Trotzdem sind die Forscher dabei, sich diese Idee vorsichtshalber schon mal patentieren zu lassen.

Weitere Informationen erhalten Sie von:

Prof. Dr. Nils Brose
Max-Planck-Institut für experimentelle Medizin, Göttingen
Tel.: 0551 3899-725
Fax: 0551 3899-715
E-Mail: brose@em.mpg.de

Dr. Harald Junge
Max-Planck-Institut für experimentelle Medizin, Göttingen
Tel.: 0551 3899-696
Fax: 0551 3899-715
E-Mail: junge@em.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Was die Körnchen im Kern zusammenhält

Gerüst von Proteinflecken im Zellkern nach 100 Jahren identifiziert. Nuclear Speckles sind winzige Zusammenballungen von Proteinen im Kern der Zelle, die an der Verarbeitung genetischer Information beteiligt sind. Berliner Forschende…

Immunologie – Damit Viren nicht unter die Haut gehen

Ein Team um den LMU-Forscher Veit Hornung hat einen Mechanismus entschlüsselt, mit dem Hautzellen Viren erkennen und Entzündungen in Gang setzen. Entscheidend für die Erkennung ist eine typische Struktur der…

Kleine Moleküle steuern bakterielle Resistenz gegen Antibiotika

Sie haben die Medizin revolutioniert: Antibiotika. Durch ihren Einsatz können Infektionskrankheiten, wie Cholera, besser behandelt werden. Doch entwickeln die krankmachenden Erreger zunehmend Resistenzen gegen die angewandten Mittel. Nun sind Wissenschaftlerinnen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close