Bakterienenzym formt molekulares Stromkabel

Anders als ähnliche Enzyme anderer Mikroorganismen besteht AOR des Bakteriums Aromatoleum aromaticum aus drei Untereinheiten, die zusammen ein Nanokabel bilden.
Abbildung: Fidel Ramírez-Amador

Einer Forschungsgruppe um die Marburger Biochemiker Dr. Jan Schuller und Professor Dr. Johann Heider sowie Professor Dr. Maciej Szaleniec aus Krakau ist es gelungen, mittels kryogener Elektronenmikroskopie die Struktur des Enzyms AOR aus dem Bakterium Aromatoleum aromaticum aufzudecken.

„Das Bakterium nutzt dieses Molekül, um umweltschädliche Aldehydverbindungen abzubauen, es besitzt im Gegensatz zu anderen Enzymen mit ähnlicher Funktion aber auch die Fähigkeit, die biotechnologisch hoch interessante Rückreaktion zu katalysieren und somit Bioalkohole herzustellen“, erklärt Schullers Mitarbeiter Fidel Ramírez-Amador, einer der Leitautoren des Fachaufsatzes.

Das Team entdeckte, dass dieses Enzym ein Stromkabel durch die Zelle bildet. „Damit erhöht das Enzym sowohl seine Stabilität als auch seine Effizienz deutlich“, sagt Szaleniecs Mitarbeiterin Agnieszka Winiarska, eine weitere Leitautorin. „Das Enzym verwendet eine Kette von Elektronen-leitenden Cofaktoren in einer filamentösen Anordnung“, legt Schuller dar, der die Forschungsarbeit zusammen mit Heider leitete.

„Die meisten ähnlichen Metalloproteine dieser Familie weisen eine starke Sensibilität gegenüber Sauerstoff auf, was eine biotechnologische Anwendung stark erschwert. Dagegen zeigt AOR aus Aromatoleum aromaticum eine hohe Sauerstoffstabilität, die vermutlich durch seine außergewöhnliche molekulare Architektur begründet ist“, ergänzt Heider. Das Team berichtet im Wissenschaftsmagazin „Science Advances“ über seine Ergebnisse.

Aromatoleum aromaticum vermag organische Schadstoffe abzubauen und gilt somit als guter Kandidat für biotechnologische Anwendungen. „Wie viele andere Mikroorganismen erweitert dieser Stamm das Repertoire seines Stoffwechsels, indem er Übergangsmetalle in Enzyme einbaut, zum Beispiel Wolfram“, erläutert Schuller. Das gilt auch für das in dieser Studie untersuchte Enyzm der Aldehyd-Oxidoreduktase, kurz AOR. Dieses Wolfram-haltige Enyzm katalysiert die Elektronenabgabe von Aldehydverbindungen.

„AOR- Enzyme sind die einzigen bekannten Biokatalysatoren, die auch die thermodynamisch schwierige Umkehrreaktion bewerkstelligen, wenn geeignete Elektronenspender zur Verfügung stehen“, führt Fidel Ramírez-Amador aus. „Obwohl AOR-Enzyme so hochentwickelte Reaktionen durchführen können, ist unser Wissen über ihre Struktur und den Mechanismus ihrer Funktion bisher spärlich“, konstatiert Heider.
„Überraschenderweise fanden wir, dass sich mehrere Enzymuntereinheiten zu kurzen Filamenten aneinanderreihen“, berichtet Ramírez-Amador. Diese Untereinheit ähnelt dem eisen- und schwefelhaltigen Protein Ferredoxin, das beim Elektronentransport mitwirkt.

„Die entstehende Struktur gleicht somit einem elektronenleitenden Nanodraht“, sagt Schuller. „Der filamentöse Kern des Enzyms wird von den katalytischen Untereinheiten umhüllt wie ein Kupferkabel von einem Plastikmantel. Diese Architektur schirmt den Nanodraht ab und bietet gleichzeitig die Möglichkeit, den Komplex mit vielen Elektronen aufzuladen.“

Die Forschungsergebnisse kamen in interdisziplinärer Zusammenarbeit zwischen dem Zentrum für Synthetische Mikrobiologie (SYNMIKRO) der Philipps-Universität und Professor Dr. Maciej Szaleniec vom Jerzy-Haber-Institut für Katalyse und Oberflächenchemie der Polnischen Akademie der Wissenschaften mit seiner Mitarbeiterin Agnieszka Winiarska zustande.

Die molekulare Zell- und Mikrobiologie zählt zu den Forschungsschwerpunkten der Philipps-Universität Marburg. Jan Michael Schuller leitet eine Emmy-Noether-Gruppe am Zentrum für Synthetische Mikrobiologie (SYNMIKRO) und am Fachbereich Chemie der Universität. Vor Kurzem erhielt er einen ERC Starting Grant des europäischen Forschungsrates. Johann Heider lehrt Mikrobielle Biochemie am Marburger Fachbereich Biologie.

Die Daten für die kryogene Elektronenmikroskopie wurden von Simone Prinz vom Max-Planck-Institut für Biophysik in Frankfurt am Main aufgenommen. Die Europäische Organisation für Molekularbiologie, die Europäische Gemeinschaft, das Nationale Wissenschaftszentrum Polens und die Deutsche Forschungsgemeinschaft unterstützten die wissenschaftliche Arbeit finanziell.

Originalveröffentlichung: Agnieszka Winiarska, Fidel Ramírez-Amador & al.: A bacterial tungsten-containing aldehyde oxidoreductase forms an enzymatic decorated protein nanowire, Science Advances 2023, DOI: http://www.science.org/doi/10.1126/sciadv.adg6689

Weitere Informationen:
Ansprechpartner:
Dr. Jan Michael Schuller,
Zentrum für Synthetische Mikrobiologie
Tel.: 06421 28-22584
E-Mail: jan.schuller@synmikro.uni-marburg.de

https://www.uni-marburg.de

Media Contact

Johannes Scholten Stabsstelle Hochschulkommunikation
Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer