Akrobatik-Duo in der Zelle

Wie ein Akrobaten-Duo – einzelne Proteine verleihen sich gegenseitig Stabilität.

Falsch gefaltete Proteine sind funktionsuntüchtig und schädigen die Zelle. Um dies zu verhindern, gibt es ein ganzes Arsenal von Proteinen – Chaperone genannt –, die als Faltungshelfer und Qualitätskontrolleuren agieren. Im Bakterium Escherichia coli schützt das Chaperon «Trigger Faktor» (TF) neu hergestellte Proteine vor einer Fehlfaltung.

Die Forschungsgruppe von Prof. Sebastian Hiller vom Biozentrum der Universität Basel konnte nun erstmals zeigen, dass sich TFs auch gegenseitig erkennen und stabilisieren. So wie der einzelne Akrobat eines Duos, stehen TF-Chaperone allein auf ziemlich wackeligen Füssen. Erst als Paar finden sie eine stabile Position.

Chaperone als Faltungshelfer für andere Proteine

In einer einzigen Bakterienzelle produzieren mehr als 10'000 Ribosomen Proteine am laufenden Band. Diese Fabriken verbinden die einzelnen Bestandteile eines Proteins zu einer langen Kette und schleusen diese durch einen engen Gang nach aussen. Das Chaperon TF, welches am Ausgang des Ribosoms hängt, nimmt die frisch produzierte Peptidkette in Empfang, schirmt sie von der Umgebung ab und hilft ihr dabei, sich korrekt zu falten. Hat das Protein seine richtige räumliche Struktur gefunden, wird es vom Chaperon entlassen und kann sich seinen Aufgaben in der Zelle widmen.

Ob Akrobat oder Chaperon – nur im Duo stabil

In der Zelle sind deutlich mehr TF-Proteine als Ribosomen vorhanden. Nur so kann sichergestellt werden, dass die abertausenden von Ribosomen vollständig besetzt sind und alle neugebildeten Proteine sofort abgefangen werden. Die überzähligen TF-Proteine sind jedoch keine Einzelgänger, sondern bilden wie zwei Akrobaten ein stabiles Duo mit einem Partner. Diesen finden sie dabei ganz von selbst.

«Bei den ungebundenen TF-Proteinen ist der Bereich, der sonst an das Ribosom bindet, lokal ungünstig gefaltet und daher energetisch instabil», erklärt Hiller. «Auf der Suche nach einer energetisch günstigen, stabilen Struktur, orientiert sich dieser labile Abschnitt permanent um. Die TFs sind in der Lage, solche dynamischen Bereiche eines Proteins aufzuspüren, auch untereinander.» Indem sich zwei instabile TF-Proteine zusammentun und wie Akrobaten an den kritischen Stellen verbinden, bilden sie ein stabiles räumliches Arrangement.

Chaperone erkennen dynamische Proteinabschnitte

«Die neuen Erkenntnisse über die Dynamik und die Bildung von stabilen TF-Duos erlauben wichtige Rückschlüsse auf die Funktionsweise von Chaperonen. Sie erkennen und binden nicht einzelne feste Protein-Strukturen, sondern ein dynamisches Ensemble von unterschiedlichen räumlichen Anordnungen», sagt Hiller. «Es zeichnet sich langsam ab, dass diese Funktionsweise ein allgemein gültiges Muster bei Chaperonen ist.» Diese Wirkungsweise der Faltungshelfer aufzuklären und auf atomarer Ebene zu verstehen, ist weltweit ein grosses Anliegen der Forschergemeinschaft. Denn Probleme bei der Faltung von Proteinen stehen auch in Verbindung mit verschiedenen Erkrankungen wie zum Beispiel der Stoffwechselkrankheit Zystische Fibrose, Krebs oder Alzheimer.

Originalbeitrag

Leonor Morgado, Björn M. Burmann, Timothy Sharpe, Adam Mazur, Sebastian Hiller
The dynamic dimer structure of the chaperone Trigger Factor
Nature Communications (2017), doi: 10.1038/s41467-017-02196-7

Weitere Auskünfte

Prof. Dr. Sebastian Hiller, Universität Basel, Biozentrum, Tel. +41 61 207 20 82, E-Mail: sebastian.hiller@unibas.ch
Dr. Katrin Bühler, Universität Basel, Kommunikation Biozentrum, Tel. +41 61 207 09 74, E-Mail: katrin.buehler@unibas.ch

Media Contact

Dr. Katrin Bühler Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Schwarzhalsige Kamelhalsfliege ist „Insekt des Jahres 2022“

Heute wurde die Schwarzhalsige Kamelhalsfliege zum „Insekt des Jahres 2022“ gekürt. Das Kuratorium unter dem Vorsitz von Prof. Dr. Thomas Schmitt, Senckenberg Deutsches Entomologisches Institut in Müncheberg, wählte das Tier…

Abbau von 3D-Proteinstrukturen: Als Öse eingefädelt

Ein Eiweiß in unserem Körper kennt den alten Handarbeitstrick: Anstatt das Garn vom Ende her ins Öhr zu fädeln, kann es leichter sein, eine Schlaufe hindurchzuführen. Auf diese Weise arbeitet…

Mikrobatterie für Halbleiterchips

Forschungsergebnisse über einkristallines Silizium als Batteriebestandteil. In der Mikroelektronik weiß man: je kleiner, effizienter und mobiler Mikrochips sind, umso vielfältiger sind die Anwendungen. Professor Michael Sternad von der Technischen Hochschule…

Partner & Förderer