Energiedichte in Biomasse erhöhen

Allein in Kanada müsste die Rapsproduktion während der kommenden 7 bis 10 Jahre um 50 bis 75 Prozent ansteigen, um den wachsenden Bedarf an Ölsaaten zu decken. Manche Pflanzen sind in der Lage, den Biodieselrohstoff in vegetativem Gewebe außerhalb des Samens wie Blättern, Stämmen, Wurzeln und Speicherorganen zu akkumulieren.

Zu diesen Pflanzen gehören beispielsweise Avocados, die das kostbare Gut in der mittleren Schicht der Fruchtwand anhäufen können. Auch Wurzeln einer bestimmten Zypergrasart sowie die Stämme der Pflanze Tetraena mongolica Maxim sind zu einer solchen Anreicherung in der Lage. Die Mechanismen der Produktion oder Repression der Ölproduktion in Geweben außerhalb des Samens sind jedoch bisher nicht bekannt.

Wertvolle Ölsaaten sind limitiert

Triaclycerole (TAG) aus Ölsaaten wie z.B. Raps, Sojabohnen und Palmen werden als Rohstoff für die Biodieselproduktion herangezogen. Biodiesel besteht aus mit Methanol veresterten Fettsäuren, die aus Pflanzenöl gewonnen werden. Momentan sind diese Quellen aufgrund von geringen Ernteerträgen und nutzbarem Ackerland limitiert. Wissenschaftler erhöhten nun die Energiedichte der Modellpflanze Arabidopsis thaliana, indem sie die wertvollen Fettsäuren anstatt nur im Samen auch in vegetativem Gewebe anreicherten.

Die Biochemie der Fettsäuren und die TAG Synthese in Pflanzen ist komplex, wird von verschiedenen Faktoren in unterschiedlichen zellulären Kompartimenten bewerkstelligt und jede biochemische Reaktion wird durch spezielle Enzyme katalysiert.

Stärke- und Ölproduktion in Konkurrenz

Wenn sich ein Samen entwickelt, wird der aus der Photosynthese fixierte Kohlenstoff aufgeteilt in verschiedene Verbindungen, die die Pflanze einlagert. Die Umwandlung des Kohlenstoffs zu Öl steht wahrscheinlich in Konkurrenz mit anderen metabolischen Stoffwechselwegen. Einer dieser Wege ist die Biosynthese von Stärke, die als Hauptkohlenstoffspeicher in Pflanzen dient. Bis zu 50 Prozent der Photosyntheseprodukte werden in Form von Stärke gespeichert.

Dabei gibt es zwei verschiedene Formen von Stärke: Speicherstärke und Übergangsstärke. Die Synthese und Akkumulation von Stärke in Speichergewebe wird durch das Wachstum und die Entwicklung der Pflanze kontrolliert. So akkumulieren beispielsweise die Samen von Arabidopsis in ihrer frühen Entwicklung Stärke, später stellt die Pflanze statt Stärke Öl her.

Übergangsstärke wird tagsüber gebildet und in den Chloroplasten der Blätter eingelagert. Ihre Synthese kann bis zu 50 Prozent des durch Photosynthese fixierten Kohlenstoffs verbrauchen. Nachts, wenn die Pflanze durch Photosynthese keinen Kohlenstoff fixieren kann, greift sie auf diese Übergangsstärke zurück.

AGPase als Steuerelement

Ein Enzym namens Adenosin Diphospho (ADP)-Glucose Pyrophosphorylase (AGPase) katalysiert den ersten Schritt der Stärkesynthese. Es wandelt Glucose-1-Phosphat und ATP zu ADP-Glucose und anorganischem Pyrophosphat um. ADP-Glucose wird von anderen Enzymen in Stärke umgewandelt. Wissenschaftler hatten bereits herausgefunden, dass die Inaktivierung der GDPase zu einer beträchtlichen Reduktion des Stärkegehalts im Samen von Raps, Erbsen und Mais führt.

Wirksamer Ansatz

Benning und Kollegen blockierten in der Modellpflanze Arabidopsis thaliana eine Untereinheit der AGPase mit der RNAi-Technik. Zusätzlich überexprimierten sie den Transkriptionsfaktor WRINKLED1 (WRI1), der an der Regulation der Ölsynthese im Samen beteiligt ist. Die so veränderten Pflanzen akkumulierten weniger Stärke und mehr Hexosen. Hexosen sind Monosaccharide, die von der Pflanze für die Glykolyse verwendet werden, welche wiederum Substrate für die Ölbiosynthese liefert. In vegetativem Gewebe produzierten diese Pflanzen außerdem 5,8 mal mehr Öl als Pflanzen, in denen nur entweder die AGPase blockiert oder WRI1 überexprimiert war.

Wie geht es weiter?

In den Gewächshäusern der Arbeitsgruppe stehen schon Steckrüben bereit, die von Stärke- zu Ölproduzenten umgewandelt werden sollen. Auch verschiedene Grasarten sollen in Zukunft zu Einsatz kommen. Der Weg zu einer Nutzpflanze mit optimalem TAG-Gehalt für die Biodieselproduktion ist zwar noch lang, die Richtung aber haben Prof. Benning und seine Mitarbeiter mit dieser Arbeit gewiesen.

Quellen:
C. Benning et al. “Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis”, Plant Biotechnology Journal, 2011, pp. 1-10 (Abstract)

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften

Weltweite, wissenschaftliche Einrichtungen forschen intensiv für eine zukunftsfähige Land- und Forstwirtschaft.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Themen: Bioenergie, Treibhausgasreduktion, Renaturierung und Landnutzungswandel, Tropenwälder, Klimaschäden, Waldsterben, Ernährungssicherung, neue Züchtungstechnologien und Anbausysteme, Bioökonomie, Wasserressourcen und Wasserwiederverwendung, Artenvielfalt, Pflanzenschutz, Herbizide und Pflanzenschädlinge, digitale Land- und Forstwirtschaft, Gentechnik, tiergerechte Haltungssysteme und ressourcenschonende Landwirtschaft.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Was die Körnchen im Kern zusammenhält

Gerüst von Proteinflecken im Zellkern nach 100 Jahren identifiziert. Nuclear Speckles sind winzige Zusammenballungen von Proteinen im Kern der Zelle, die an der Verarbeitung genetischer Information beteiligt sind. Berliner Forschende…

Immunologie – Damit Viren nicht unter die Haut gehen

Ein Team um den LMU-Forscher Veit Hornung hat einen Mechanismus entschlüsselt, mit dem Hautzellen Viren erkennen und Entzündungen in Gang setzen. Entscheidend für die Erkennung ist eine typische Struktur der…

Kleine Moleküle steuern bakterielle Resistenz gegen Antibiotika

Sie haben die Medizin revolutioniert: Antibiotika. Durch ihren Einsatz können Infektionskrankheiten, wie Cholera, besser behandelt werden. Doch entwickeln die krankmachenden Erreger zunehmend Resistenzen gegen die angewandten Mittel. Nun sind Wissenschaftlerinnen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close