Haarnadel auf Partnersuche – Ultraschnelle Dynamik der Proteinfaltung nachgewiesen

Fehler bei diesem hoch komplexen Prozess können zu neurodegenerativen Erkrankungen, etwa Alzheimer und Parkinson, aber auch zu anderen Leiden führen. Dennoch ist die Proteinfaltung noch weitgehend unverstanden.

Ein Forscherteam um Professor Wolfgang Zinth, Lehrstuhl für BioMolekulare Optik der Ludwig-Maximilians-Universität (LMU) München hat nun in Zusammenarbeit mit Wissenschaftlern des Max-Planck-Instituts für Biochemie in Martinsried die Faltung und Entfaltung eines häufigen Strukturmotivs von Proteinen untersucht.

Wie in der Fachzeitschrift „Proceedings of the National Academy of Sciences (PNAS)“ berichtet, läuft die Auflösung dieser so genannten Haarnadelstruktur extrem schnell ab, während ihre Bildung etwa 100.000-mal länger dauert – wohl weil eine Vielzahl von Anordungen erst getestet werden muss.

Die korrekte Faltung einer Aminosäurekette in ein funktionsfähiges Protein, etwa ein Enzym, ist von fundamentaler Bedeutung für nahezu alle Prozesse im Körper. „Eine besonders wichtige Rolle bei diesen Vorgängen spielen die so genannten Betastrukturen der Proteine“, berichtet Projektleiter Zinth. „Bei diesen Faltblättern und Haarnadelstrukturen laufen die Aminosäurestränge parallel oder antiparallel zueinander.“ Für ihre Untersuchung nutzten die Forscher eine einfache Haarnadelstruktur als Modell für die komplexeren Faltblätter. In diesem Fall wurde zusätzlich ein Farbstoff eingebaut, so dass die Struktur der Haarnadel durch Licht verändert werden konnte. Diese Vorgänge – sowie die dabei gebildeten Zwischenstufen – konnten nur mit Hilfe von Simulationsmethoden und der Ultrakurzzeitspektroskopie verfolgt werden.

Denn die Prozesse der Faltung und Umfaltung erfolgten extrem schnell – wenn auch mit unterschiedlicher Geschwindigkeit. Die Aufschaltung der Haarnadelstruktur, also ihre durch Licht bewirkte Zerstörung, erfolgte innerhalb weniger 100 Pikosekunden. Eine Pikosekunde ist der millionste Teil einer millionstel Sekunde. Im Gegensatz dazu dauerte die Faltung der Haarnadelstruktur etwa 100.000-mal länger. „Dieser Unterschied wird offensichtlich dadurch verursacht, dass die beiden Stränge der Haarnadel bei der Faltung erst verschiedene Anordnungen austesten müssen, bevor die korrekte Struktur gefunden ist“, meint Zinth. „In Analogie kann man sich das Auffalten der Haarnadel wie das Aufplatzen eines Reißverschlusses vorstellen, während beim Schließen viele mögliche Anordnungen aktiv durchsucht werden müssen, bevor die beiden Hälften korrekt aufeinander passen.“

Publikation:
„Light-triggered – hairpin folding and unfolding“,
Tobias E. Schrader, Wolfgang J. Schreier, Thorben Cordes, Florian O. Koller, Galina Babitzki, Robert Denschlag, Christian Renner, Markus Löweneck, Shou-Liang Dong, Luis Moroder, Paul Tavan, and Wolfgang Zinth,

PNAS Early Ediiton, 25. September 2007

Ansprechpartner:
Professor Dr. Wolfgang Zinth
Biomolekulare Optik, Department für Physik der LMU
Tel.: 089 / 2180-9201
Fax: 089 / 2180-9202
E-Mail: zinth@physik.uni-muenchen.de

Media Contact

Luise Dirscherl idw

Weitere Informationen:

http://www.uni-muenchen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wolken bedecken die Nachtseite des heißen Exoplaneten WASP-43b

Ein Forschungsteam, darunter Forschende des MPIA, hat mit Hilfe des Weltraumteleskops James Webb eine Temperaturkarte des heißen Gasriesen-Exoplaneten WASP-43b erstellt. Der nahe gelegene Mutterstern beleuchtet ständig eine Hälfte des Planeten…

Neuer Regulator des Essverhaltens identifiziert

Möglicher Ansatz zur Behandlung von Übergewicht… Die rapide ansteigende Zahl von Personen mit Übergewicht oder Adipositas stellt weltweit ein gravierendes medizinisches Problem dar. Neben dem sich verändernden Lebensstil der Menschen…

Maschinelles Lernen optimiert Experimente mit dem Hochleistungslaser

Ein Team von internationalen Wissenschaftlerinnen und Wissenschaftlern des Lawrence Livermore National Laboratory (LLNL), des Fraunhofer-Instituts für Lasertechnik ILT und der Extreme Light Infrastructure (ELI) hat gemeinsam ein Experiment zur Optimierung…

Partner & Förderer