Leistungsstarker Nickel-Monolith-Katalysator trägt zur Reduzierung von Stickoxiden aus Kraftwerken bei

Katalysatoren beseitigen Schadstoffe, bevor diese in unsere Umwelt gelangen und diese verschmutzen können. Ein neuer Nickel-Monolith-Katalysator aus Spanien trägt zur Reduzierung von Stickoxiden aus Kraftwerken bei.

Unter dem Druck einer immer strenger werdenden Umweltgesetzgebung sind Ingenieure ständig auf der Suche nach besseren, saubereren Arten der Energieerzeugung. Auf diesem Gebiet treten Vergasungsanlagen in den Vordergrund. In solchen Anlagen werden Kohle oder andere karbonhaltige Brennstoffe durch Einwirkung von Dampf, Sauerstoff und Luft unter Hochdruck- und Hochtemperaturbedingungen aufgespalten. Die Nebenprodukte der Spaltung werden in Gas umgewandelt, das dann zur Strom- bzw. Wärmeerzeugung verbrannt wird.

Durch solche Kraftwerke können alternative Brennstoffe wie Teer und Biomasse aufbereitet werden. Es gilt jedoch noch ein Hindernis zu überwinden die Stickoxid-Reduktion auf ein annehmbares Maß. Dies wird durch Katalyse erreicht, d.h durch die Umwandlung von Ammoniak im Vergasungsstrom in harmlose Nebenprodukte.

Eine Gruppe an der Universidad Complutense de Madrid startete eine eingehende Untersuchungskampagne, um ausreichend Daten zur Effektivität verschiedener Katalysatoren unter verschiedenen Betriebsbedingungen zusammenzutragen. Aufgrund seines nützlichen Widerstands hinsichtlich Wärmeausdehnung und -kontraktion sowie seiner optimalen Reaktionsoberflächeneigenschaften wurde ein Nickel-Monolith-Katalysator ausgewählt.

Um Deaktivierungsprobleme zu lösen, wurde ein großer Aufwand betrieben. Darüber hinaus wurde im Laufe des Projekts ein Modell entwickelt und verbessert, das einen wertvollen Einblick in die Rolle der Betriebsbedingungen bei der Katalysatorleistung liefert. Es wurden die kritischen Systemvariablen bestimmt: die Lufttrennung im Vergaser/katalytischen Reformersystem, das Wasser/Kohlenstoff-Verhältnis und die Eintrittstemperatur am Katalysator.

Durch die sorgfältige Veränderung dieser Parameter konnte fast die gesamte Ammoniakmenge in eine andere Chemikalie als Stickoxid umgewandelt werden. So kann die beim Betrieb eines solchen Kraftwerks entstehende Luftverschmutzung besser kontrolliert werden.

Kontaktangaben

Prof. Jose Corella
Universidad Complutense de Madrid
Ciudad Universitaria
28040 Madrid, Spanien
Tel: +34-91-3944164
Fax: +34-91-3944164
Email: narvaez@quim.ucm.es

Media Contact

Prof. Jose Corella ctm

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz

Dieser Themenkomplex befasst sich primär mit den Wechselbeziehungen zwischen Organismen und den auf sie wirkenden Umweltfaktoren, aber auch im weiteren Sinn zwischen einzelnen unbelebten Umweltfaktoren.

Der innovations report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Klimaschutz, Landschaftsschutzgebiete, Ökosysteme, Naturparks sowie zu Untersuchungen der Leistungsfähigkeit des Naturhaushaltes.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Atomkern mit Laserlicht angeregt

Dieser lange erhoffte Durchbruch ermöglicht neuartige Atomuhren und öffnet die Tür zur Beantwortung fundamentaler Fragen der Physik. Forschenden ist ein herausragender Quantensprung gelungen – sprichwörtlich und ganz real: Nach jahrzehntelanger…

Wie das Immunsystem von harmlosen Partikeln lernt

Unsere Lunge ist täglich den unterschiedlichsten Partikeln ausgesetzt – ungefährlichen genauso wie krankmachenden. Mit jedem Erreger passt das Immunsystem seine Antwort an. Selbst harmlose Partikel tragen dazu bei, die Immunantwort…

Forschende nutzen ChatGPT für Choreographien mit Flugrobotern

Robotik und ChatGPT miteinander verbinden… Prof. Angela Schoellig von der Technischen Universität München (TUM) hat gezeigt, dass Large Language Models in der Robotik sicher eingesetzt werden können. ChatGPT entwickelt Choreographien…

Partner & Förderer