Forschende identifizieren Proteine, die essentiell für die Motilitätsstruktur der Archaeen sind

Archaeen sind einzellige Lebewesen ohne Zellkern – ebenso wie die weitaus besser erforschten Bakterien. Quelle: Sonja-Verena Albers

Einem Forschungsteam um Prof. Dr. Sonja-Verena Albers von der Professur für Mikrobiologie der Universität Freiburg und Prof. Dr. John Tainer von der Universität Texas in Austin/USA gelang nun, Proteine zu identifizieren, die essentiell für den Aufbau der Motilitätsstruktur, also für die Fähigkeit zur aktiven Bewegung, der Archaeen sind — und damit auch für die Fortbewegung von Zellen. Sein Ergebnis präsentiert das Team in der aktuellen Ausgabe des Forschungsmagazins Nature Microbiology.

Für Mikroorganismen ist es wichtig, sich aktiv bewegen zu können, um bei Verschlechterung der Lebensbedingungen nach besseren suchen zu können. Bakterien nutzen dafür das so genannte Flagellum, eine kompliziert aufgebaute Struktur, für deren Aufbau bis zu 50 Proteine benötigt werden, die sich in einem genau festgelegten zeitlichen Ablauf zusammenbauen.

Die Wissenschaftlerinnen und Wissenschaftler nahmen an, dass Archaeen dieselbe Struktur wie Bakterien zu einer schwimmenden Fortbewegung benutzen. Aber nachdem sie die ersten archaealen Genome sequenzieren konnten, fanden sie heraus, dass Archaeen keine solchen Flagellenoperone besitzen.

Stattdessen benutzen Archaeen, um zu schwimmen, eine Struktur, die Archaellum genannt wird. Diese besteht im von Albers verwendeten Modellorganismus Sulfolobus acidocaldarius, den Archaeen, die in extrem sauren, hydrothermalen Quellen leben, aus nur sieben Untereinheiten.

„Dennoch kann diese relativ einfache Struktur dieselben Leistungen erbringen wie das bakterielle Flagellum“, erklärt die Biologin.

Sie konnte mit ihrem Team bereits die Struktur des dafür notwendigen Proteins FlaI aufdecken und zeigen, dass es mit den Proteinen FlaX und FlaH den Motorkomplex des Archaellums formt. Zudem beschrieben die Freiburger Wissenschaftler das Protein FlaF, das sich an das einzige Zellwandprotein des Modellorganismus bindet und es dort fest verankert.

„Darüber können die Archaeen mit der Umwelt, und damit auch mit menschlichen Zellen, interagieren“, erklärt Albers. In der aktuellen veröffentlichten Studie zeigen die Forschenden, dass das Protein FlaG in der Lage ist, ein Filament, vergleichbar mit einer Faser, zu bilden.

Zusammen mit FlaF bildet FlaG dann einen Proteinkomplex, der essentiell für den Aufbau des Archaellums ist. Vermutlich sitzt dieser Komplex an der Spitze des FlaG-Filaments, was FlaG und FlaF ermöglicht, mit der Zellwand zu interagieren.

Zudem konnten die Wissenschaftler nachweisen, dass Zellen ohne Zellwand zwar ein Archaellum bilden, aber nicht schwimmen können. Das deute wiederum darauf hin, sagt Albers, dass die Interaktion zwischen FlaG und FlaF und der Zellwand zur Funktion des Archaellums beiträgt:

„Uns ist es gelungen, zu zeigen, dass FlaG und FlaF essentiell für die Rotation des Archaellums und dadurch für die Fortbewegung der Zelle sind.“

Das Projekt wurde von einem FET-OPEN-Projekt der MARA-Projekte der Europäischen Union unterstützt.

Originalpublikation:
Tsai, C.-L., Tripp, P., Sivabalasarma, S., Zhang, C., Rodriguez-Franco, M., Wipfler, R.L., Chaudhury, P., Banerjee, A., Beeby, M., Whitaker, R.J., Tainer, J.A., Albers, S.-V. (2019): The structure of the periplasmic FlaG–FlaF complex and its essential role for archaellar swimming motility. In: Nature Microbiology. DOI: 10.1038/s41564-019-0622-3

Kontakt:
Prof. Dr. Sonja-Verena Albers
Institut für Biologie II – Mikrobiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2630
E-Mail: sonja.albers@biologie.uni-freiburg.de

DOI: 10.1038/s41564-019-0622-3

Media Contact

Nicolas Scherger idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-freiburg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Mikrobiom verändert sich dynamisch und begünstigt wichtige Funktionen für den Wirt

Ein interdisziplinäres Forschungsteam des Kieler SFB 1182 untersucht am Beispiel von Fadenwürmern, welche Prozesse die Zusammensetzung des Mikrobioms in Wirtslebewesen steuern. Alle vielzelligen Lebewesen – von den einfachsten tierischen und…

Wasser im Boden – genaue Daten für Landwirtschaft und Klimaforschung

Die PTB präsentiert auf der Woche der Umwelt, wie sich die Bodenfeuchte mithilfe von Neutronenstrahlung messen lässt. Die Bodenfeuchte hat nicht nur Auswirkungen auf die Landwirtschaft, sondern ist als Teil…

Bioreaktor- und Kryotechnologien für bessere Wirkstofftests mit humanen Zellkulturen

Medizinische Wirkstoffforschung… Viele Neuentwicklungen von medizinischen Wirkstoffen scheitern, weil trotz erfolgreicher Labortests mit Zellkulturen starke Nebenwirkungen bei Probanden auftreten. Dies kann passieren, wenn zum Beispiel die verwendeten Zellen aus tierischem…

Partner & Förderer