Maschinelles Lernen hilft, Photonik-Anwendungen zu optimieren

Die Simulation zeigt, wie sich nach Anregung das Feld in der Lochmuster-Schicht verteilt. Dabei bilden sich lokale Maxima aus. Dort leuchten die Quantenpunkte besonders stark. Carlo Barth/HZB

Mit Nanostrukturen lässt sich die Empfindlichkeit von optischen Sensoren enorm steigern – sofern die Geometrie bestimmte Bedingungen erfüllt und zur Wellenlänge des eingestrahlten Lichts passt. Denn das elektromagnetische Feld des Lichts kann durch die Nanostruktur lokal extrem verstärkt oder abgeschwächt werden.

Am HZB arbeitet die Nachwuchsgruppe Nano-SIPPE um Prof. Dr. Christiane Becker daran, solche Nanostrukturen gezielt zu entwickeln. Ein wichtiges Werkzeug dabei sind Computersimulationen. Dr. Carlo Barth aus Beckers Team hat nun mit Einsatz von maschinellem Lernen die wichtigsten Muster der Feldverteilung in einer Nanostruktur identifiziert und damit auch erstmals sehr gut die experimentellen Befunde erklärt.

Nanostrukturen: Licht bringt Quantenpunkte zum Leuchten

Die in dieser Arbeit betrachteten photonischen Nanostrukturen bestehen aus einer Siliziumschicht mit einem regelmäßigen Lochmuster, die mit Quantenpunkten aus Bleisulfid beschichtet ist. Angeregt mit einem Laser leuchten die Quantenpunkte durch die lokalen Felderhöhungen wesentlich stärker als auf einer unstrukturierten Oberfläche. Damit lässt sich experimentell zeigen, wie das Laserlicht mit der Nanostruktur wechselwirkt.

Zehn verschiedene Muster

Um nun systematisch zu erfassen, was passiert, wenn sich einzelne Parameter der Nanostruktur verändern, berechnete Barth unter Verwendung einer am Zuse-Institut Berlin entwickelten Software für jeden Parametersatz die dreidimensionale Feldverteilung. Diese enormen Datenmengen ließ Barth dann von weiteren Computerprogrammen analysieren, die auf Methoden des maschinellen Lernens basieren.

„Der Rechner hat die rund 45.000 Datensätze durchforstet und in etwa zehn unterschiedliche Muster gruppiert“, erklärt Barth. Schließlich gelang es Barth und Becker unter anderen drei Grundmuster herauszukristallisieren, bei denen in verschiedenen spezifischen Bereichen der Nanolöcher die Felder verstärkt sind.

Sensoren für einzelne Moleküle, zum Beispiel Krebsmarker

Dies erlaubt nun die Optimierung photonischer Kristallmembranen für praktisch jede Anwendung, die auf Anregungsverstärkung basiert. Denn je nach Anwendung lagern sich manche Biomoleküle zum Beispiel bevorzugt entlang der Lochränder an, andere eher auf den Plateaus zwischen den Löchern.

Mit der richtigen Geometrie und der passenden Anregung durch Licht ließe sich dann die maximale Feldverstärkung exakt an den Anlagerungsplätzen der gesuchten Moleküle erzeugen. Damit ließe sich die Sensitivität von optischen Sensoren, beispielsweise für Krebsmarker, bis auf das Niveau von Einzelmolekülen erhöhen.

Der verwendete Code und auch die Daten stehen frei zum Download zur Verfügung.

Die Studie ist publiziert in Communications Physics (2018). “Machine learning classification for field distributions of photonic modes”, Carlo Barth & Christiane Becker

DOI:10.1038/s42005-018-0060-1

Media Contact

Dr. Antonia Rötger Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Aufbruchstimmung in der Alzheimer-Forschung

Bei der Alzheimer Erkrankung lagern sich Eiweiße im Gehirn ab und schädigen es. Prof. Dr. Susanne Aileen Funke von der Hochschule Coburg hat eine Methode gefunden, die solche gefährlichen Eiweißverbindungen…

Chronische Entzündungen durch Ansätze aus der Natur behandeln

Die interdisziplinäre Forschungsgruppe „nature4HEALTH“ hat jüngst ihre Arbeit aufgenommen. Das Team der Friedrich-Schiller-Universität Jena und des Universitätsklinikums Jena entwickelt ganzheitliche naturstoffbasierte Therapieansätze für die Behandlung chronisch-entzündlicher Erkrankungen. Chronische Entzündungen sind…

Antivirale Beschichtungen und Zellkultur-Oberflächen maßgeschneidert herstellen

Verfahren der Kieler Materialwissenschaft ermöglicht erstmals umfassenden Vergleich von Beschichtungen für biomedizinische Anwendungen. Der Halteknopf im Bus, die Tasten im Fahrstuhl oder die Schutzscheibe am Anmeldetresen in der Arztpraxis: Täglich…

Partner & Förderer