Platin-Nanopartikel "graben" sich in Zeolith-Träger ein und erzeugen dabei neue Poren

Abgas-Katalysatoren von Autos bestehen aus winzigen Platin-Partikeln, die auf einem porösen keramischen Träger aufgebracht sind. Bei hohen Temperaturen können diese Partikel sintern, das heißt mit dem Trägermaterial zusammenschmelzen und chemische Reaktionen eingehen. Was passiert dabei nanoskopisch? Und könnte man diese Vorgänge vielleicht nutzen? Japanische Wissenschaftler um Hitoshi Kato haben Platin-Partikel auf einer Zeolith-Oberfläche genauer unter die Lupe genommen – besser gesagt unter das Elektronenmikroskop – und dabei Erstaunliches entdeckt: Partikel, die Gänge „buddeln“.

Zeolithe sind kristalline, hochporöse Silikate. Auf Grund ihrer hohen Oberfläche und ihrer käfigartigen Poren, in die „Gastmoleküle“ aufgenommen werden können, sind sie als Ionenaustauscher, Molekularsiebe und Katalysatoren im Einsatz. Einen solchen Zeolithen wählten die Forscher als Träger für ihre Platin-Partikel und setzten ihn bei 800°C einer Atmosphäre aus, die einem durchschnittlichen Autoabgas entsprach. Nach hundert Stunden sahen sie sich die kleinen platinhaltigen Zeolithkriställchen unter dem Elektronenmikroskop an. Und oh Wunder: Auf der Zeolith-Oberfläche waren keine Platin-Partikel mehr zu erkennen. Wo konnten sie sein? Der überraschende Befund: Die winzigen Edelmetall-Kügelchen hatten sich regelrecht in die Oberfläche des Zeolithen hinein gegraben. Dabei hinterließen sie kleine Kanäle, die ungefähr dem jeweiligen Durchmesser des Partikels entsprachen. Dabei ist eine Vorzugsrichtung innerhalb der Zeolith-Kriställchen zu verzeichnen. Die Kanäle haben einen sechseckigen Querschnitt, was im Einklang mit der Gitterstruktur des Zeolithen steht, und die Kanalwände werden aus Facetten des Kristalls gebildet. Abgesehen von je einem Platinkügelchen am Ende der Gänge sind diese ansonsten leer und die umliegende Kristallstruktur wird in keiner Wiese gestört. Offenbar sind einfach einige Atome aus dem Kristallgitter entschwunden. An den Berührungsstellen zwischen Platinteilchen und Zeolith katalysiert das Platin vermutlich eine chemische Reaktion zwischen den Silicium- und Sauerstoffatomen des Zeolithen und Bestandteilen der Abgas-Atmosphäre. Dabei können Bestandteile des Zeolithen in Form von SiO und Si(OH)4 aus dem Kristall austreten. Die Platinteilchen „sinken“ immer tiefer in die so entstehenden Löcher ein.

„Das beobachtete Phänomen könnte genutzt werden, um maßgeschneiderte poröse Materialien herzustellen,“ hofft Kato. „Die Porenanzahl, -form und -größe ließen sich über die Anzahl und den Durchmesser der Platinpartikel, die Dauer des Erhitzens, den gewählten Zeolith-Typus und die Orientierung der Kriställchen einstellen.“

Kontakt:

Hitoshi Kato
Materials Research and Development Laboratory
Japan Fine Ceramics Center
2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
Fax: (+81) 52-871-3599
E-mail: hkato@jfcc.or.jp

Angewandte Chemie
Postfach 101161 , D-69451 Weinheim
Tel.: 06201/606 321, Fax: -331
E-Mail: angewandte@wiley-vch.de

Media Contact

Dr. Renate Hoer idw

Weitere Informationen:

http://www.angewandte.org

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer