400.000 Euro für Forschung an neuer Materialklasse

An der Universität Hamburg befassen sich zwei Forscherteams des Instituts für Angewandte Physik mit dieser neuartigen Stoffklasse, und ihre Forschung wird seit Anfang August 2013 im Rahmen des Schwerpunktprogramms „Topological Insulators: Materials – Fundamental Properties – Devices“ (SPP 1666) der Deutschen Forschungsgemeinschaft (DFG) mit insgesamt 400.000 Euro gefördert.

Spätestens seit der Entdeckung des Graphens – einer Modifikation von Kohlenstoff (Graphit) – als bisher dünnstem Material der Welt, sind Oberflächeneigenschaften in den Fokus der Materialforscherinnen und -forscher gerückt. Die Arbeit an topologischen Isolatoren ist momentan weltweit der am schnellsten wachsende Forschungsbereich in der Festkörperphysik und Materialforschung. „Topologisch“ bezeichnet dabei das Hervortreten einer besonderen physikalischen Eigenschaft ausschließlich an der Oberfläche, z.B. metallische Leitfähigkeit.

Anders als z.B. bei Kupferdraht, durch dessen gesamten Querschnitt Strom fließt, leitet ein topologischer Isolator die Elektronen nur in einer hauchdünnen Schicht an der Oberfläche. Dadurch kann Strom wesentlich verlustfreier fließen. Das Besondere an dem Material ist außerdem die extreme Stabilität seiner Oberfläche. Topologische Isolatoreffekte wurden bisher an sogenannten Chalcogenid-Verbindungen nachgewiesen. Das sind chemische Verbindungen, in denen sich der elektrische Widerstand verändern lässt und die als Halbleitermaterialien z.B. in der Photovoltaik zum Einsatz kommen.

Von der Untersuchung der topologischen Isolatoren verspricht sich die Forschung Erkenntnisse, deren Anwendung z.B. die Informationsverarbeitung bei der Computertechnologie revolutionieren könnte. Das Projekt von Dr. Jens Wiebe aus dem Arbeitskreis von Prof. Roland Wiesendanger untersucht mit Hilfe der Spin-aufgelösten Rastertunnelmikroskopie, welchen Einfluss magnetische Atome auf die Transporteigenschaften von topologischen Isolatoren haben. Mit dieser Mikroskopie-Methode können Strukturen im Bereich einzelner Atome sichtbar gemacht werden. Ziel ist es, die Physik der Oberflächenzustände in topologischen Isolatoren besser zu verstehen. Das Projekt findet in enger Zusammenarbeit mit der Arbeitsgruppe von Prof. Philip Hoffmann an der Universität in Aarhus, Dänemark, statt.

Im zweiten Projekt versucht Prof. Kornelius Nielsch, mit einem speziellen Beschichtungsverfahren, der sogenannten epitaktischen Atomlagen-Abscheidung, die elektronischen Strukturen von topologischen Isolatoren maßzuschneidern, so dass der Transport von Strom ausschließlich an der Oberfläche stattfindet. Die Vorstufen dafür werden von Prof. Stephan Schulz an der Universität Duisburg/Essen entwickelt. Ziel ist es, topologische Isolatoren mit speziell angepassten Eigenschaften in elektronische Bauelemente integrieren zu können.

Besonderes Kennzeichen eines DFG-Schwerpunktprogramms ist die überregionale Kooperation der teilnehmenden Wissenschaftlerinnen und Wissenschaftler. Prof. Nielsch hat das neue Schwerpunktprogramm zusammen mit Kollegen an der Humboldt Universität Berlin, dem Forschungszentrum Jülich, der Universität Würzburg, dem Max-Planck-Institut für Chemische Physik Fester Stoffe in Dresden und dem Helmholtz-Zentrum Berlin für Materialien und Energie eingeworben (Koordination: Prof. Oliver Rader). Aus 81 eingereichten Anträgen wurden 34 Projekte zur Förderung durch eine internationale Jury empfohlen. Als Laufzeit sind insgesamt sechs Jahre vorgesehen. Die Förderung in der ersten Förderperiode von Sommer 2013 bis Sommer 2016 beträgt 6,3 Millionen Euro.

Für Rückfragen:
Prof. Dr. Kornelius Nielsch
Universität Hamburg
Institut für angewandte Physik
Tel. 040/4 28 38-6521
E-Mail: Kornelius.Nielsch@physik.uni-hamburg.de

Media Contact

Birgit Kruse idw

Weitere Informationen:

http://www.uni-hamburg.de

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Atomkern mit Laserlicht angeregt

Dieser lange erhoffte Durchbruch ermöglicht neuartige Atomuhren und öffnet die Tür zur Beantwortung fundamentaler Fragen der Physik. Forschenden ist ein herausragender Quantensprung gelungen – sprichwörtlich und ganz real: Nach jahrzehntelanger…

Wie das Immunsystem von harmlosen Partikeln lernt

Unsere Lunge ist täglich den unterschiedlichsten Partikeln ausgesetzt – ungefährlichen genauso wie krankmachenden. Mit jedem Erreger passt das Immunsystem seine Antwort an. Selbst harmlose Partikel tragen dazu bei, die Immunantwort…

Forschende nutzen ChatGPT für Choreographien mit Flugrobotern

Robotik und ChatGPT miteinander verbinden… Prof. Angela Schoellig von der Technischen Universität München (TUM) hat gezeigt, dass Large Language Models in der Robotik sicher eingesetzt werden können. ChatGPT entwickelt Choreographien…

Partner & Förderer