Seit 15 Millionen Jahren herausragend – Schweizer Alpen beeinflussen Europas Klima seit dem Miozän

Wolken in den Zentralalpen – 15 Millionen Jahre alte Niederschlagsspuren verraten wie hoch die damaligen Berge waren. Foto: Marion Campani, BiK-F<br>

Die Hausberge Europas waren demnach schon vor 15 Millionen Jahren mindestens so hoch wie heute. Wissenschaftlerinnen und Wissenschaftler des Biodiversität und Klima Forschungszentrums (BiK-F), der Goethe-Universität Frankfurt und der ETH Zürich haben die Isotopenverhältnisse von Sauerstoff im Gestein der Alpen und dem Alpenvorland verglichen und konnten so die Höhe der Gipfel in der Vergangenheit bestimmen. Die Studie wurde kürzlich in „Earth and Planetary Science Letters“ veröffentlicht.

Obwohl die Alpen zu den am besten erforschten Gebirgen der Welt gehören, ist ihre topographische Geschichte bisher nahezu unbekannt. Aufschluss verspricht eine neue Studie, die zeigt, dass die alpine Topographie, so wie sich heute präsentiert, ihre Wurzeln vor 15 Millionen Jahren hat. Die höchsten Gipfel der Schweiz waren damals zwischen 2850 m und 3350 m hoch. Damit war die Gebirgskette im Durchschnitt sogar noch höher als heute. „Das lässt darauf schließen, dass das Gros des alpinen Höhenprofils vor über 15 Millionen Jahren entstanden ist, als durch die Kollision von Europa und Afrika die Hebungsraten des Gebirges die gleichzeitige Abtragung durch Erosion übertrafen.“, kommentiert Dr. Marion Campani, Biodiversität und Klima Forschungszentrum (BiK-F), Leitautorin der Studie.

Alpen kontrollieren seit 15 Millionen Jahren Niederschlag in Südeuropa
Hohe Bergketten bilden ein natürliches Hindernis für feuchte Luftmassen und beeinflussen so das Klima zu beiden Seiten dieser Barriere. Ihre Höhe ist dabei der entscheidende Faktor. Die neuen Erkenntnisse lassen daher Rückschlüsse auf die Niederschlagsmuster in Südeuropa und Eurasien und damit indirekt auch auf die Entwicklungsbedingungen ganzer Ökosysteme im Mittelmeerraum zu. Im Fall der Alpen bedeutet dies: Seit 15 Millionen Jahren hat das aufragende Gebirge den Transport des vom Atlantik kommenden Niederschlags Richtung Zentraleuropa und Eurasien bestimmt und damit das Klima des östlichen Mittelmeerraums entscheidend geprägt. „Diese Region wurde bereits in der Vergangenheit immer wieder von Trockenheit bedroht und ist ein Schwerpunkt der mit globaler Erwärmung assoziierten Wasserknappheit. Wer das Klima der Vergangenheit verstehen will, um Projektionen für die Zukunft der Region abzuleiten, für den führt an den Alpen kein Weg vorbei.“, so Prof. Dr. Andreas Mulch, BiK-F und Goethe-Universität Frankfurt.

Anhand von geochemischen Regenspuren die frühere Höhe bestimmt
Wie hoch Berge im Laufe ihrer Entwicklung waren, lässt sich anhand von Sauerstoff-Isotopen rekonstruieren. Konserviert im 15 Millionen Jahre alten Gestein, speichern sie Informationen über den Niederschlag dieser Zeit. Das funktioniert, weil das Element in Form unterschiedlich schwerer Isotope vorkommt. Niederschlag, der am Gipfel der Gebirge fällt, hat einen niedrigeren Anteil an schweren Isotopen als solcher in Tieflagen. Also verrät das Verhältnis schwerer zu leichten Isotopen im uralten Regenwasser, in welcher Höhe der Niederschlag zu einer bestimmten Zeit gefallen ist. Erstmalig gelang es nun, 15 Millionen Jahre alten Niederschlag aus dem Alpenvorland, das damals ungefähr auf Höhe des Meeresspiegels lag mit Niederschlag aus den ehemaligen Hochgebieten der Alpen miteinander zu vergleichen. Damit wurde es möglich, die damalige Höhendifferenz des Hochgebirges zum Alpenvorland zu bestimmen. „Außerdem sind Gebirge ab einer gewissen Höhe selbst in der Lage, das Klima und die kontinentalen Niederschlagsmuster zu beeinflussen. Deshalb muss man sich auch die Quelle der feuchten Luftmassen anschauen, um Veränderungen der Zusammensetzung und Menge des Niederschlags an dessen Ursprung in der Isotopen-Analyse mit berücksichtigen zu können.“, so Campani weiter zum Hintergrund des neuen Ansatzes.

Für weitere Informationen kontaktieren Sie bitte:

Prof. Dr. A. Mulch
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F) & Goethe-Universität Frankfurt
Tel. 069 7542 1881
andreas.mulch@senckenberg.de

Dr. Marion Campani
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F)
Tel. 069 7542 1883
marion.campani@senckenberg.de

oder

Sabine Wendler
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F),
Pressereferentin
Tel. 069 7542 1838
sabine.wendler@senckenberg.de

Studie:
Campani, M., et al. (2012): Miocence paleotopography of the Central Alps. Earth and Planetary Science Letters, DOI: 10.1016/j.epsl.2012.05.017.
Online unter: http://www.sciencedirect.com/science/article/pii/S0012821X12002439

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
Mit dem Ziel, anhand eines breit angelegten Methodenspektrums die komplexen Wechselwirkungen von Biodiversität und Klima zu entschlüsseln, wird das Biodiversität und Klima Forschungszentrum (BiK‐F) seit 2008 im Rahmen der hessischen Landes‐ Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz (LOEWE) gefördert. Die Senckenberg Gesellschaft für Naturforschung und die Goethe Universität Frankfurt sowie weitere direkt eingebundene Partner kooperieren eng mit regionalen, nationalen und internationalen Institutionen aus Wissenschaft, Ressourcen‐ und Umweltmanagement, um Projektionen für die Zukunft zu entwickeln und wissenschaftlich gesicherte Empfehlungen für ein nachhaltiges Handeln zu geben.

Media Contact

Sabine Wendler Senckenberg

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Atomkern mit Laserlicht angeregt

Dieser lange erhoffte Durchbruch ermöglicht neuartige Atomuhren und öffnet die Tür zur Beantwortung fundamentaler Fragen der Physik. Forschenden ist ein herausragender Quantensprung gelungen – sprichwörtlich und ganz real: Nach jahrzehntelanger…

Wie das Immunsystem von harmlosen Partikeln lernt

Unsere Lunge ist täglich den unterschiedlichsten Partikeln ausgesetzt – ungefährlichen genauso wie krankmachenden. Mit jedem Erreger passt das Immunsystem seine Antwort an. Selbst harmlose Partikel tragen dazu bei, die Immunantwort…

Forschende nutzen ChatGPT für Choreographien mit Flugrobotern

Robotik und ChatGPT miteinander verbinden… Prof. Angela Schoellig von der Technischen Universität München (TUM) hat gezeigt, dass Large Language Models in der Robotik sicher eingesetzt werden können. ChatGPT entwickelt Choreographien…

Partner & Förderer