Wasserstoffbrücken: Forscher finden neuen Mechanismus

Schema der Bildung einer Wasserstoffbrückenbindung eines Hydroxidions mit einem Wassermolekül. Abbildung: BESSY<br>

Wasser ist allgegenwärtig und die Grundlage allen Lebens auf der Erde. Die Vorgänge, die sich auf molekularer Ebene im Wasser abspielen, sind jedoch noch immer nicht in allen Einzelheiten verstanden. Bernd Winter und Kollegen vom Berliner Elektronenspeicherring BESSY und vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnten jetzt eine bislang unbekannte Eigenschaft des negativ geladenen Ions des Wassers, des Hydroxidions (OH-), nachweisen. Sie berichten darüber in der aktuellen Ausgabe von Nature (E.F. Aziz et al, Nature, 455, 89-91,2008).

Die Forscher fanden heraus, dass Hydroxidionen in der Lage sind, auch über ihr Wasserstoffatom Wasserstoffbrücken auszubilden. Bisher nahm man an, dass Hydroxidionen nur als sogenannte Protonenakzeptoren fungieren können, das heißt ihr negativ geladenes Sauerstoffatom tritt mit positiven Wasserstoffatomen (Protonen) der umgebenden Wassermoleküle in Wechselwirkung. Winter und Kollegen wiesen nun nach, dass Hydroxidionen in einer wässrigen Natriumhydroxidlösung, nach Anregung durch Photonen Energie auf benachbarte Wassermoleküle übertragen können, sofern sie in einer ganz bestimmten Weise um das Hydroxidion angeordnet sind. Ersetzten die Forscher in ihren Versuchen die Hydroxidionen durch die ebenfalls negativ geladenen Chlorid- oder Fluoridionen, konnten sie das Phänomen nicht beobachten.

Daraus schlossen sie, dass die im Spektrum beobachteten Resonanzmuster von der schwächeren 'Donor' Wasserstoffbrückenbindung herrührten. Diese Unterscheidung lässt sich für die hydratisierten Halogenionen nicht machen. Mit anderen Worten, Halogenionen „wandern“ durch die Lösung, bei Hydroxidionen wird die Ladung von Molekül zu Molekül „weitergereicht“ (Strukturdiffusion).

Für ihre Untersuchungen nutzten die Forscher die Photoelektronenspektroskopie und als Photonenquelle die Synchrotronstrahlung. Bei dem Verfahren wird die wässrige Probe mit Photonen einer genau definierten Energie angeregt. Je nach Energie können die Photonen die Elektronen der Moleküle auf ein höheres Energieniveau heben oder sie sogar aus den Molekülen „heraus katapultieren“. Durch Messung der Energie der freiwerdenden Elektronen lassen sich dann Aussagen über die elektronischen Eigenschaften des Moleküls und über den Aufbau von chemischen Bindungen treffen.

Winter und seine Kollegen sind die ersten, die Photoelektronenspektroskopie auch auf wässrige Lösungen anwenden können. Sie mussten dabei das Problem umgehen, dass sich die Energien von Photoelektronen aufgrund des hohen Dampfdruckes von Wasser nicht detektieren lassen. Das gelingt erst, wenn man das Wasservolumen auf die Größe eines nur wenige Mikrometer dünnen kontinuierlichen Strahls reduziert. Hat dieser sogenannte Microjet eine genügend hohe Geschwindigkeit, lässt sich dann auch einem vorzeitigen Gefrieren in der Vakuumkammer zuvorkommen.

Kontakt:
Dr. Bernd Winter,
Tel.: 030 6392 5001,
E-Mail: bernd.winter@bessy.de

Media Contact

Christine Vollgraf Forschungsverbund Berlin e.V.

Weitere Informationen:

http://www.bessy.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer