Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarindustrie erzielt hohen Kostenvorteil durch den Einsatz des richtigen Lasers

11.09.2012
Für die Produktion sensibler elektronischer Bauteile wie Solarzellen sind berührungslose und materialselektive Laserprozesse von zentraler Bedeutung.

Das Werkzeug Licht kann für die kristalline und die Dünnschicht-Photovoltaik den entscheidenden Schritt zu höheren Effizienzen und geringeren Herstellungskosten ermöglichen.


Laufender Prozess zum selektiven Abtrag einer Siliziumnitridschicht auf einem Siliziumwafer.
Fraunhofer ILT, Aachen


Mittels Laserstrahlung strukturiertes siliziumbasiertes Dünnschichtmodul.
Fraunhofer ILT, Aachen

Mit diesem Ziel entwickelt das Fraunhofer-Institut für Lasertechnik ILT robuste, industrietaugliche Verfahren zur hochauflösenden Strukturierung dünner Schichten sowie maschinentechnische Komponenten für hohen Durchsatz. Im Vordergrund der Forschungsaktivitäten steht dabei die Optimierung der Prozesse durch den Einsatz des richtigen Lasers.

Eine konkurrenzfähige Prozesstechnik für die Produktion von elektronischen Komponenten erfordert hohe Geschwindigkeiten, geringe Strukturgrößen und die Anwendbarkeit auf große Formate. In der organischen Elektronik erlaubt strukturiertes Drucken bei hohen Geschwindigkeiten derzeit Strukturgrößen bis circa. 10 Mikrometern. Eine wesentlich höhere Auflösung und Produktivität lässt sich mit der Strukturierung durch Laser erreichen. Hier kommt es besonders darauf an, denjenigen Laser auszuwählen, der optimal für die Erfordernisse der individuellen Anwendung geeignet ist.

»Die meisten Unternehmen in der Solarindustrie wissen gar nicht, wie viel Zeit und Kosten sie durch den Einsatz des richtigen Lasers bei der Herstellung von Dünnschicht- Solarmodulen oder kristallinen Solarzellen sparen können«, erklärt Dr. Malte Schulz-Ruthenberg, Projektleiter am Fraunhofer ILT. »Zum Beispiel erfordert die Erzeugung komplexer Strukturen für die Realisierung von elektronischen Schaltungen bei hohen Flächenraten völlig andere Ansätze zur Strahlführung und –formung als das Hochrate-Bohren für Rückkontakt-Solarzellen«

Am Fraunhofer ILT verfolgen Wissenschaftler daher in mehreren Projekten unterschiedliche Ansätze zur Verbesserung der Prozesseffizienz. Dazu gehört unter anderem die Möglichkeit der Mehrfachstrahlteilung durch Verwendung von diffraktiv-optischen Elementen, die den Durchsatz einer Produktionsanlage drastisch erhöhen können. Die Entwicklung eines Polygonscanners wiederum erlaubt die zweidimensionale Strukturierung dünner Schichten mit extrem hohen Geschwindigkeiten von einigen hundert Metern pro Sekunde. Auf dem Fraunhofer-Gemeinschaftsstand Halle 3/G22 der European Photovoltaic Solar Energy Conference and Exhibition, kurz EU PVSEC, in Frankfurt vom 24. - 28. September 2012 präsentiert das Fraunhofer ILT dem Fachpublikum den Demonstrator dieses Polygonscanners. In Kombination mit modernen Strahlquellen mit hohen Repetitionsraten kann er den Durchsatz in der Produktion signifikant erhöhen. Der Polygonscanner lässt sich sowohl für die Bearbeitung von Dünnschicht-Solarmodulen als auch von kristallinen Solarzellen einsetzen.

Serienverschaltung für starre und flexible Solarmodule

Einen Schwerpunkt der Forschungsaktivitäten am Fraunhofer ILT bildet neben der Maschinentechnik die Weiterentwicklung von Strukturierungsprozessen für Dünnschicht-Solarmodule. Diese erfordern eine Serienverschaltung kleiner Zellstreifen, damit die Stromdichten reduziert werden können, was wiederum elektrische Verluste innerhalb des Moduls verringert. Was vielfach noch durch mechanisches Ritzen erzielt wird, kann mittels Laserstrahlung schneller und sauberer erreicht werden. Die Herausforderung für die ILT-Forscher besteht nun darin, die zwischen einigen Nanometern und wenigen Mikrometern dünnen Schichten leitender, halbleitender oder isolierender Materialien in Ihrer Funktionalität nicht zu beeinträchtigen. Denn aufgrund der sehr geringen Schichtdicken können bei der Bearbeitung beispielsweise Rückstände des abgetragenen Materials oder thermische Schädigung benachbarter Bereiche zur Degradierung der Schicht führen und somit das gesamte Solarmodul seiner Funktion beraubt werden. Die Laserstrukturierungsprozesse müssen deswegen an die unterschiedlichen Eigenschaften jeder Einzelschicht individuell angepasst werden. Der Einsatz von Ultrakurzpulslasern ermöglicht hierbei physikalische Prozesse, welche mit größeren Pulsdauern nicht möglich sind. Dadurch eröffnen sich neue Prozessfenster und neue industrietaugliche Prozesse werden realisierbar.
Im Projekt Flexlas, gefördert durch die Europäische Kommission und das Land Nordrhein-Westfalen, wird am Fraunhofer ILT ein Laserstrukturierungsverfahren für organische Solarzellen auf flexiblen Foliensubstraten entwickelt. Dieser Art von Solarmodulen gilt als kostengünstiges und zukunftsweisendes Produkt im Bereich der Solarenergie. Künftig sind Textilien oder Handtaschen mit biegsamen Solarzellen denkbar, an denen sich ein Mobiltelefon aufladen lässt. Die in Aachen entwickelten Laserstrukturierungsprozesse lassen sich auch auf weitere Produkte mit Mehrschichtsystemen anwenden wie Bildschirme für Smartphones oder flache Beleuchtungselemente.

Produktionstechnik für kristalline Solarzellen

In Forschung und Entwicklung wird derzeit an einer Vielzahl von Laserprozessen für die Herstellung von kristallinen Solarzellen gearbeitet. So lassen sich zum Beispiel mit einem am Fraunhofer ILT entwickelten Verfahren 10.000 Bohrungen pro Sekunde und mehr in Siliziumwafern erzeugen. Dünne Passivierungsschichten lassen sich nahezu ohne Beeinflussung der elektrischen Funktionalität entfernen und laserbasierte Modulherstellung ermöglicht Lötzeiten von unter einer Sekunde durch innovative Strahlformungsoptiken.

Hier kann der Einsatz der richtigen Strahlquelle den Produktionsprozess erheblich verbessern. ILT-Forscher erproben derzeit eine Vielzahl von Strahlquellen, um möglichst große Parameterbereiche in Bezug auf Pulsdauer, Wellenlänge, prozessangepasste Strahlverteilung usw. abzudecken und laserinduzierte Schädigungen zu minimieren.

Des Weiteren arbeiten die Aachener Wissenschaftler an neuartigen Ansätzen zur Produktion von Hocheffizienzzellen. Für die Erzeugung einer reflexionsmindernden Textur, welche die maximale Ausnutzung des Sonnenlichts unterstützt, wird hier ein abtragsfreier Laserprozess mit einem nachträglichen Ätzschritt kombiniert, um die laserinduzierte Materialschädigung auf ein Minimum zu reduzieren und die Prozessgeschwindigkeit zu maximieren. Dies trägt wiederum zu einer signifikanten Reduktion der Produktionskosten bei.

Ansprechpartner

Dr. Malte Schulz-Ruthenberg | Gruppe Mikro- und Nanostrukturierung | Telefon +49 241 8906-604 | malte.schulz-ruhtenberg@ilt.fraunhofer.de | Fraunhofer-Institut für Lasertechnik ILT, Aachen | www.ilt.fraunhofer.de

Dr. Alexander Olowinsky | Leiter Gruppe Mikrofügen | Telefon +49 241 8906-491 | alexander.olowinsky@ilt.fraunhofer.de | Fraunhofer-Institut für Lasertechnik ILT, Aachen

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Mikrostrukturen mit dem Laser ätzen
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie