Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarindustrie erzielt hohen Kostenvorteil durch den Einsatz des richtigen Lasers

11.09.2012
Für die Produktion sensibler elektronischer Bauteile wie Solarzellen sind berührungslose und materialselektive Laserprozesse von zentraler Bedeutung.

Das Werkzeug Licht kann für die kristalline und die Dünnschicht-Photovoltaik den entscheidenden Schritt zu höheren Effizienzen und geringeren Herstellungskosten ermöglichen.


Laufender Prozess zum selektiven Abtrag einer Siliziumnitridschicht auf einem Siliziumwafer.
Fraunhofer ILT, Aachen


Mittels Laserstrahlung strukturiertes siliziumbasiertes Dünnschichtmodul.
Fraunhofer ILT, Aachen

Mit diesem Ziel entwickelt das Fraunhofer-Institut für Lasertechnik ILT robuste, industrietaugliche Verfahren zur hochauflösenden Strukturierung dünner Schichten sowie maschinentechnische Komponenten für hohen Durchsatz. Im Vordergrund der Forschungsaktivitäten steht dabei die Optimierung der Prozesse durch den Einsatz des richtigen Lasers.

Eine konkurrenzfähige Prozesstechnik für die Produktion von elektronischen Komponenten erfordert hohe Geschwindigkeiten, geringe Strukturgrößen und die Anwendbarkeit auf große Formate. In der organischen Elektronik erlaubt strukturiertes Drucken bei hohen Geschwindigkeiten derzeit Strukturgrößen bis circa. 10 Mikrometern. Eine wesentlich höhere Auflösung und Produktivität lässt sich mit der Strukturierung durch Laser erreichen. Hier kommt es besonders darauf an, denjenigen Laser auszuwählen, der optimal für die Erfordernisse der individuellen Anwendung geeignet ist.

»Die meisten Unternehmen in der Solarindustrie wissen gar nicht, wie viel Zeit und Kosten sie durch den Einsatz des richtigen Lasers bei der Herstellung von Dünnschicht- Solarmodulen oder kristallinen Solarzellen sparen können«, erklärt Dr. Malte Schulz-Ruthenberg, Projektleiter am Fraunhofer ILT. »Zum Beispiel erfordert die Erzeugung komplexer Strukturen für die Realisierung von elektronischen Schaltungen bei hohen Flächenraten völlig andere Ansätze zur Strahlführung und –formung als das Hochrate-Bohren für Rückkontakt-Solarzellen«

Am Fraunhofer ILT verfolgen Wissenschaftler daher in mehreren Projekten unterschiedliche Ansätze zur Verbesserung der Prozesseffizienz. Dazu gehört unter anderem die Möglichkeit der Mehrfachstrahlteilung durch Verwendung von diffraktiv-optischen Elementen, die den Durchsatz einer Produktionsanlage drastisch erhöhen können. Die Entwicklung eines Polygonscanners wiederum erlaubt die zweidimensionale Strukturierung dünner Schichten mit extrem hohen Geschwindigkeiten von einigen hundert Metern pro Sekunde. Auf dem Fraunhofer-Gemeinschaftsstand Halle 3/G22 der European Photovoltaic Solar Energy Conference and Exhibition, kurz EU PVSEC, in Frankfurt vom 24. - 28. September 2012 präsentiert das Fraunhofer ILT dem Fachpublikum den Demonstrator dieses Polygonscanners. In Kombination mit modernen Strahlquellen mit hohen Repetitionsraten kann er den Durchsatz in der Produktion signifikant erhöhen. Der Polygonscanner lässt sich sowohl für die Bearbeitung von Dünnschicht-Solarmodulen als auch von kristallinen Solarzellen einsetzen.

Serienverschaltung für starre und flexible Solarmodule

Einen Schwerpunkt der Forschungsaktivitäten am Fraunhofer ILT bildet neben der Maschinentechnik die Weiterentwicklung von Strukturierungsprozessen für Dünnschicht-Solarmodule. Diese erfordern eine Serienverschaltung kleiner Zellstreifen, damit die Stromdichten reduziert werden können, was wiederum elektrische Verluste innerhalb des Moduls verringert. Was vielfach noch durch mechanisches Ritzen erzielt wird, kann mittels Laserstrahlung schneller und sauberer erreicht werden. Die Herausforderung für die ILT-Forscher besteht nun darin, die zwischen einigen Nanometern und wenigen Mikrometern dünnen Schichten leitender, halbleitender oder isolierender Materialien in Ihrer Funktionalität nicht zu beeinträchtigen. Denn aufgrund der sehr geringen Schichtdicken können bei der Bearbeitung beispielsweise Rückstände des abgetragenen Materials oder thermische Schädigung benachbarter Bereiche zur Degradierung der Schicht führen und somit das gesamte Solarmodul seiner Funktion beraubt werden. Die Laserstrukturierungsprozesse müssen deswegen an die unterschiedlichen Eigenschaften jeder Einzelschicht individuell angepasst werden. Der Einsatz von Ultrakurzpulslasern ermöglicht hierbei physikalische Prozesse, welche mit größeren Pulsdauern nicht möglich sind. Dadurch eröffnen sich neue Prozessfenster und neue industrietaugliche Prozesse werden realisierbar.
Im Projekt Flexlas, gefördert durch die Europäische Kommission und das Land Nordrhein-Westfalen, wird am Fraunhofer ILT ein Laserstrukturierungsverfahren für organische Solarzellen auf flexiblen Foliensubstraten entwickelt. Dieser Art von Solarmodulen gilt als kostengünstiges und zukunftsweisendes Produkt im Bereich der Solarenergie. Künftig sind Textilien oder Handtaschen mit biegsamen Solarzellen denkbar, an denen sich ein Mobiltelefon aufladen lässt. Die in Aachen entwickelten Laserstrukturierungsprozesse lassen sich auch auf weitere Produkte mit Mehrschichtsystemen anwenden wie Bildschirme für Smartphones oder flache Beleuchtungselemente.

Produktionstechnik für kristalline Solarzellen

In Forschung und Entwicklung wird derzeit an einer Vielzahl von Laserprozessen für die Herstellung von kristallinen Solarzellen gearbeitet. So lassen sich zum Beispiel mit einem am Fraunhofer ILT entwickelten Verfahren 10.000 Bohrungen pro Sekunde und mehr in Siliziumwafern erzeugen. Dünne Passivierungsschichten lassen sich nahezu ohne Beeinflussung der elektrischen Funktionalität entfernen und laserbasierte Modulherstellung ermöglicht Lötzeiten von unter einer Sekunde durch innovative Strahlformungsoptiken.

Hier kann der Einsatz der richtigen Strahlquelle den Produktionsprozess erheblich verbessern. ILT-Forscher erproben derzeit eine Vielzahl von Strahlquellen, um möglichst große Parameterbereiche in Bezug auf Pulsdauer, Wellenlänge, prozessangepasste Strahlverteilung usw. abzudecken und laserinduzierte Schädigungen zu minimieren.

Des Weiteren arbeiten die Aachener Wissenschaftler an neuartigen Ansätzen zur Produktion von Hocheffizienzzellen. Für die Erzeugung einer reflexionsmindernden Textur, welche die maximale Ausnutzung des Sonnenlichts unterstützt, wird hier ein abtragsfreier Laserprozess mit einem nachträglichen Ätzschritt kombiniert, um die laserinduzierte Materialschädigung auf ein Minimum zu reduzieren und die Prozessgeschwindigkeit zu maximieren. Dies trägt wiederum zu einer signifikanten Reduktion der Produktionskosten bei.

Ansprechpartner

Dr. Malte Schulz-Ruthenberg | Gruppe Mikro- und Nanostrukturierung | Telefon +49 241 8906-604 | malte.schulz-ruhtenberg@ilt.fraunhofer.de | Fraunhofer-Institut für Lasertechnik ILT, Aachen | www.ilt.fraunhofer.de

Dr. Alexander Olowinsky | Leiter Gruppe Mikrofügen | Telefon +49 241 8906-491 | alexander.olowinsky@ilt.fraunhofer.de | Fraunhofer-Institut für Lasertechnik ILT, Aachen

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Testverfahren für Photovoltaikwafer als DIN SPEC
26.06.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

nachricht Ausweg aus dem Chrom-Verbot
30.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten