Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren zum Recycling von Fluorpolymeren

11.08.2010
Das Ziel: eine Pilotanlage für die industrielle Wiederverwertung

Fluorpolymere sind Hochleistungs-Kunststoffe, die weltweit in einer Vielzahl von Produkten zum Einsatz kommen.

Insbesondere das Polytetrafluorethylen (PTFE), unter dem rechtlich geschützten Markennamen „Teflon“ weltbekannt, ist in vielen Industriebranchen ein unverzichtbares Material. Es zeichnet sich durch eine hohe Widerstandsfähigkeit gegen Hitze und Chemikalien aus, fast nichts bleibt daran haften. Nicht nur Bratpfannen, sondern auch zahlreiche Dichtungen und Lager – beispielsweise in Kraftfahrzeugen – werden mit PTFE beschichtet. Die Textilindustrie verwendet PTFE als Material für atmungsaktive Membranen in Funktionstextilien, und in der Elektrotechnik ist PTFE ein wichtiger Werkstoff für Kabelisolationen.

Aber was geschieht mit PTFE-haltigen Industrieabfällen und Altprodukten?

Weltweit gibt es bisher kein industrielles Recycling für Fluorpolymere. Dieses Problem wird immer brisanter. Denn bei der bis heute üblichen Verbrennung werden hochgiftige umweltschädliche Dämpfe freigesetzt, die wegen ihrer korrosiven Wirkung auch die Verbrennungsanlagen beschädigen.

Und eine Deponierung der Altlasten ist künftig aufgrund von Rechtsvorschriften der Europäischen Union verboten. Abfälle, die persistente organische Schadstoffe – wie beispielsweise Fluorpolymere – enthalten, müssen so verwertet oder beseitigt werden, dass die Schadstoffe zerstört oder unumkehrbar in nichtschädliche Substanzen umgewandelt werden.

Ein neues Verfahren: wirtschaftlich effizient, ohne ökologische Risiken Wohin also mit den Fluorpolymeren, wenn sie weder verbrannt noch auf Deponien gelagert werden sollen? Bei der Lösung dieser Frage ist einem Forschungsprojekt an der Universität Bayreuth ein entscheidender Durchbruch gelungen. Drei Partner haben daran mitgewirkt: der Lehrstuhl für Werkstoffverarbeitung unter der Leitung von Prof. Dr. Monika Willert-Porada; das Forschungsinstitut InVerTec e.V., das der Universität Bayreuth als An-Institut verbunden ist; und die Firma Dyneon GmbH, die heute zu den weltweit bedeutendsten Produzenten von PTFE gehört und ein hohes Interesse an einem Recyclingverfahren hat. In enger Zusammenarbeit ist es den Projektpartnern gelungen, ein wirtschaftlich effizientes und ökologisch unbedenkliches Verfahren zu entwickeln, das die Fluorpolymere in wiederverwertbare Bestandteile zersetzt. Die Deutsche Bundesstiftung Umwelt (DBU) hat das Projekt zwei Jahre lang mit 211.000 Euro gefördert.

Das neue Verfahren zeichnet sich dadurch aus, dass die großen PTFE-Moleküle zu einem sehr hohen Prozentsatz in kleinere Moleküle, in sog. Monomere, zerlegt werden. Bei diesen Bausteinen handelt es sich um Moleküle von Gasen, insbesondere von Tetrafluorethylen und Hexafluorpropen. Bis zu 93% dieser Gase, aus denen sich das PTFE zusammensetzt, lassen sich durch das in den Bayreuther High-Tech-Laboratorien erprobte Verfahren zurückgewinnen – und zwar so, dass von diesem Prozess keine gesundheitsschädigenden Wirkungen für die daran beteiligten Mitarbeiter ausgehen.

Die Gase können nun unter umweltsicheren Bedingungen an den PTFE-Produzenten zurückgegeben und hier erneut für die industrielle Produktion von PTFE eingesetzt werden. Dadurch werden die Fluorpolymere nahezu vollständig in den Stoffkreislauf zurückgeführt. Gemeinsam mit der Firma Dyneon GmbH haben die Bayreuther Ingenieurwissenschaftler ein Konzept entwickelt, wie dieses Recycling im Industriemaßstab realisiert werden kann.

Vom Recycling-Konzept zur Pilotanlage.

Auf dem Weg zur Lösung einer drängenden Entsorgungsproblematik Die Zersetzung des PTFE in seine Bestandteile ist ein Vorgang, der in der Forschung als Depolymerisation bezeichnet wird. Das Verfahren, das hierfür in Bayreuth entwickelt wurde, ist ein sog. Wirbelschichtprozess. Von zentraler Bedeutung sind dabei eine sehr kurzzeitige Erhitzung der Fluorpolymere und eine dadurch ausgelöste Pyrolyse. Als Energiequelle kommen u.a. Mikrowellen zum Einsatz.

Die Projektpartner sind aber nicht bei diesem Forschungsergebnis stehen geblieben. In einem weiteren Schritt haben sie untersucht, welche Technologie in besonderer Weise geeignet ist, das Verfahren im Industriemaßstab zu realisieren. Dabei haben sie eine Vielzahl ökonomischer, ökologischer und technischer Kriterien in die Bewertung einbezogen.

Das Ergebnis: Der Prozess, der zur Zersetzung der Fluorpolymere führt, lässt sich – alles in allem – besonders vorteilhaft auch mit einer Rührkessel-Technologie realisieren. Aufgrund dieser Erkenntnisse arbeiten der Lehrstuhl für Werkstoffentwicklung und die Firma Dyneon GmbH derzeit am Konzept einer Pilotanlage für dieses Verfahren. „Der Bau dieser Pilotanlage würde den Weg in ein industrielles Recycling von Fluorpolymeren öffnen und damit zur Lösung einer drängenden Entsorgungsproblematik beitragen“, erklärt Willert-Porada. „Das wissenschaftliche und technologische Know-How dafür haben wir uns erarbeitet. Jetzt wünschen sich alle Projektpartner, dass für den Bau der Pilotanlage die erforderlichen finanziellen Mittel bereitgestellt werden können.“

Kontakt für weitere Informationen:
Prof. Dr. Monika Willert-Porada
Lehrstuhl für Werkstoffverarbeitung
Universität Bayreuth
95440-Bayreuth
Telefon: +49 (0)921 / 55-7200, -7201, -7202
E-Mail: monika.willert-porada@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/blick-in-die-forschung/21-2010-Bilder/

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie
11.12.2017 | Universität Bayreuth

nachricht Bioverfahrenstechnik - Mit Kugeln optimal messen
01.12.2017 | Fraunhofer-Institut für Elektronische Nanosysteme

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten