Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überlebensstrategie eines Bakteriums als Vorbild für Biobrennstoffzellen

24.10.2006
Es gibt kaum einen Ort, wo Pseudomonas aeruginosa nicht lebt. Das Bakterium wächst im Boden, im Wasser und kann in Pflanzen und Früchten gefunden werden.

Sogar Desinfektionsmittel erträgt es, was den Einzeller zu einem gefürchteten Gegner der Krankenhaushygieniker macht. Möglich ist dies, weil das Bakterium von unterschiedlichsten Stoffen leben kann. So gewinnt es die Energie, die es zum Leben braucht, beispielsweise auch aus dem Alkohol Ethanol. Eigentlich nicht ungewöhnlich, schließlich kann man Alkohol zur Energiegewinnung auch einfach verbrennen.

Jedoch: "Die Kunst ist es, dies in so geordneten Bahnen zu tun, dass die Energie hinterher nutzbar ist", erklärt Robert Bittl, Professor am Fachbereich Physik der Freien Universität Berlin, der den Prozess zusammen mit seinem Kollegen Helmut Görisch, Professor für Technische Biochemie an der Technischen Universität Berlin, untersucht. Die Wissenschaftler denken, dass die Mechanismen des Bakteriums eines Tages vielleicht für Sensoren oder Biobrennstoffzellen genutzt werden könnten.

Für den Alkoholabbau ist im Bakterium ein bestimmtes Enzym zuständig. Wie jedes Protein gleicht es einem Wollknäuel, dessen Fäden aus Ketten von so genannten Aminosäuren bestehen. Darin befinden sich Taschen, in die ein Ethanolmolekül hineinpasst. Das alleine reicht aber nicht aus, um den Alkoholabbau in Gang zu setzen. Dazu bedarf es eines weiteren Faktors, von Experten Kofaktor genannt. Hier ist das ein Molekül mit so kompliziertem Namen, dass man besser nur die Abkürzung benutzt: PQQ (Pyrroloquinolin-Chinon). Beim Alkoholabbau in Pseudomonas aeruginosa spielt PQQ eine Schlüsselrolle.

... mehr zu:
»Biobrennstoffzelle »Enzym »Ethanol »PQQ »Prozess

"Wir wussten bisher nicht genau, wie es weiter geht, wenn das Ethanolmolekül die passende Tasche mit dem PQQ im Enzym gefunden hat", sagt Robert Bittl. Wie die Tasche aussieht, wurde schon vor einigen Jahren mit Röntgenstrahlen untersucht. Wissenschaftler ließen eine große Zahl der Enzyme zu einem Kristall wachsen und durchleuchteten dieses. "Es war aber nie möglich, das Enzym zusammen mit Alkohol zu kristallisieren", sagt der Biophysiker. Deshalb konnte man bisher auch nicht aufklären, wie das Ethanol in der Bindungstasche sitzt. Das ist aber entscheidend für die Frage, wie das Enzym den Alkohol abbaut.

Robert Bittl und seine Kollegen haben ihre physikalischen Methoden benutzt, um die Lage des Ethanols in der Tasche zu klären, wie sie in der Fachzeitschrift Proceedings of the National Academy of Sciences, USA berichten. Es zeigte sich, dass ihre Methode, für die sie Mikrowellen, Radiowellen und Magnetfelder einsetzen, auch dann funktioniert, wenn sie das Enzym zusammen mit dem Alkohol in ihre Apparatur gaben.

Das Ethanol nistet sich so in die Tasche ein, dass es sehr leicht ein positiv geladenes Wasserstoffatom an das Protein und dann ein negativ geladenes Wasserstoffatom an das PQQ abgeben kann. Dadurch setzt das Enzym eine Reaktion in Gang. Übrig bleiben ein oxidiertes, bereits teilweise abgebautes Ethanol und ein PQQ, das zwei Elektronen mehr hat als es braucht. In gewissem Sinn ist die Verbrennungsenergie damit auf das PQQ übergegangen. Danach verlässt das oxidierte Ethanol die Bindungstasche und die zwei Elektronen werden vom PQQ schrittweise über andere Proteine und Kofaktoren weiter gegeben. Diese Prozesse sind noch nicht vollständig geklärt. Am Ende entsteht ein elektrochemisches Potential über der Zellmembran, ähnlich wie in einer Batterie. Diese Energie nutzt die Bakterienzelle.

"Wenn man es schafft, das elektrochemische Potential abzugreifen, das bei dieser Reaktion entsteht, könnte man einen Sensor für Alkohole bauen", sagt der Biochemiker Helmut Görisch. Vielleicht könnten Biotechnologen die Vorlage aus der Natur sogar dazu verwenden, eine Biobrennstoffzelle zu bauen, die mithilfe von Alkohol elektrische Energie erzeugt. Da Pseudomonas aeruginosa den Abbau von Alkohol über Jahrmillionen verbessert hat, ist zu erwarten, dass es den Prozess sehr effizient durchführt. "Es ist aber nicht immer so, dass die Prozesse in der Natur genau für die Zweck optimiert sind, für die wie sie gerne einsetzen würden", meint Helmut Görisch. Das wird man erst wissen, wenn man die Funktionsweise des Enzyms genau verstanden hat.

Von Michael Fuhs

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Robert Bittl, Institut für Experimentalphysik der Freien Universität Berlin, Telefon: 030 / 838-56049, E-Mail: robert.bittl@physik.fu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.fu-berlin.de

Weitere Berichte zu: Biobrennstoffzelle Enzym Ethanol PQQ Prozess

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise