Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Höchstleistungslaser für Medizin und Naturwissenschaften

08.03.2006


Neue Nachwuchsforschergruppe am Institut für Optik und Quantenelektronik der Universität Jena



Ein Tumor im Gehirn lässt sich nur sehr schwer behandeln, denn ihn umgibt höchst sensibles Gewebe. Die Behandlungslösung der Zukunft könnte ein Protonenstrahl sein, der von einem Laser erzeugt wird. Diese Protonen, also die Elementarteilchen des Atomkerns, können dann den Tumor zielgenau zerstören, ohne das umliegende Hirn zu beschädigen. An der Entwicklung und am Einsatz des dafür benötigten Lasers arbeitet eine neue Nachwuchsforschergruppe um Dr. Malte Kaluza am Institut für Optik und Quantenelektronik (IOQ) der Friedrich-Schiller-Universität Jena.



Etwa 1999 entstand an diesem Institut die Idee für einen Höchstleistungslaser mit einer Leistung im Petawatt-Bereich. Das entspricht 1.000 Billionen Watt, für deren Erzeugung sonst eine Million Kernkraftwerke notwendig wären. In den ersten Jahren konnte das Team am IOQ nachweisen, dass der Aufbau eines solchen Lasersystems prinzipiell möglich ist. Darauf aufbauend haben sie einen komplett diodengepumpten Festkörperlaser der Ein-Petawatt-Klasse, genannt POLARIS (Petawatt Optical Laser Amplifier for Radiation Intensive Experiments), entwickelt.

Dieses System wird nach seiner Fertigstellung Laserpulse erzeugen, die mit einer Intensität von 10 hoch 21 Watt/Quadrat-cm auf ein Ziel fokussiert werden können. Was das bedeutet, beschreibt Dr. Kaluza mit einem Vergleich: Nimmt man das gesamte auf die Erdoberfläche fallende Sonnenlicht und konzentriert es auf einem Fleck von einem Zehntel Millimeter Durchmesser, dann erreicht man etwa die angestrebte Intensität.

Dr. Kaluza nennt weitere Anforderungen an den Laser. Er soll eine extrem kurze Pulsdauer von 150 Femtosekunden haben. Die Pulsenergie soll 150 Joule erreichen. Und der Laser soll mit einer Pulsfolge von einem Schuss pro zehn Sekunden abgefeuert werden können. Von diesen Parametern ist die neue Forschergruppe noch etwas entfernt. "In einem ersten Schritt wollen wir alle 10 bis 30 Sekunden einen Puls erzeugen", sagt Dr. Kaluza. Bereits das wäre für solche Pulsenergien weltweit ein Spitzenwert. Die Leistung des Lasers soll Ende des Jahres 0,1 Petawatt erreichen. "Schon damit können wir erste Experimente zur Elektronen- und Ionenbeschleunigung durchführen, um die Physik der Wechselwirkungen zu studieren", erklärt der 31-jährige Wissenschaftler, der die neue Nachwuchsforschergruppe seit Jahresbeginn leitet. Zuvor hat der aus Gießen stammende Physiker an der Technischen Universität München, am Max-Planck-Institut für Quantenoptik sowie am Imperial College London mit ähnlichen Lasersystemen geforscht.

Die potenziellen Anwendungsmöglichkeiten eines Höchstleistungslasers sind vielfältig. So könnte er in Zukunft monoenergetische Protonen- oder Ionenstrahlen für die oben beschriebene Tumortherapie liefern, sagt Dr. Kaluza. Die Eigenschaften eines solchen Protonenstrahls müssen dafür so präzise eingestellt und kontrolliert werden, dass nur das kranke Tumorgewebe zerstört wird. "POLARIS ist ein sehr aussichtsreicher Kandidat für solche Anwendungen", weiß Dr. Kaluza. Auf der Technologie von POLARIS aufbauende Lasersysteme wären zudem - im Vergleich zu kilometergroßen Beschleunigeranlagen - kompakt genug, um sie auch in Krankenhäusern betreiben zu können. Eine weitere Anwendungsmöglichkeit wäre die Herstellung von radioaktiven Nukliden für die Medizin mit einer genau definierten Zerfallsdauer für die Diagnose.

Mit POLARIS können aber auch extrem kurze Röntgenpulse oder ein Röntgenlaser erzeugt werden. Neben der Realisierung einer extrem intensiven Röntgenquelle für lithographische Techniken wäre auch die Analyse chemischer Reaktionen möglich. Diese laufen so schnell ab, dass sie mit herkömmlichen Methoden nicht vollständig erfasst werden können. "Das wäre etwa so, als würde man versuchen, bei einem vorbeifahrenden Formel-1-Rennwagen die Aufschrift auf den Reifen mit dem bloßen Auge zu lesen", sagt Malte Kaluza. "Teilt man unseren Laser in zwei Strahlen, könnte mit der einen Hälfte z. B. eine Reaktion ausgelöst werden. Mit der anderen Hälfte erzeugen wir dann einen ultra-kurzen Röntgenblitz, mit dem wir dann in mehreren aufeinanderfolgenden Aufnahmen den Ablauf der chemischen Reaktion in Einzelschritten sichtbar machen können", beschreibt er eine weitere mögliche Anwendung von POLARIS.

Die Arbeit der von Dr. Kaluza geleiteten Nachwuchsforschergruppe, der 16 Mitarbeiter angehören, wird vom Bundesforschungsministerium gefördert. Bis Ende 2010 stellt das Ministerium dafür fünf Millionen Euro zur Verfügung.

Kontakt:
Dr. Malte Kaluza
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947280
E-Mail: kaluza[at]ioq.uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Höchstleistungslaser Laser Lasersystem POLARIS Quantenelektronik

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Nikon setzt zukünftig auf Messtechnik „Made in Jena“
23.10.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Elektrodenmaterialien aus der Mikrowelle
18.10.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie