Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Höchstleistungslaser für Medizin und Naturwissenschaften

08.03.2006


Neue Nachwuchsforschergruppe am Institut für Optik und Quantenelektronik der Universität Jena



Ein Tumor im Gehirn lässt sich nur sehr schwer behandeln, denn ihn umgibt höchst sensibles Gewebe. Die Behandlungslösung der Zukunft könnte ein Protonenstrahl sein, der von einem Laser erzeugt wird. Diese Protonen, also die Elementarteilchen des Atomkerns, können dann den Tumor zielgenau zerstören, ohne das umliegende Hirn zu beschädigen. An der Entwicklung und am Einsatz des dafür benötigten Lasers arbeitet eine neue Nachwuchsforschergruppe um Dr. Malte Kaluza am Institut für Optik und Quantenelektronik (IOQ) der Friedrich-Schiller-Universität Jena.



Etwa 1999 entstand an diesem Institut die Idee für einen Höchstleistungslaser mit einer Leistung im Petawatt-Bereich. Das entspricht 1.000 Billionen Watt, für deren Erzeugung sonst eine Million Kernkraftwerke notwendig wären. In den ersten Jahren konnte das Team am IOQ nachweisen, dass der Aufbau eines solchen Lasersystems prinzipiell möglich ist. Darauf aufbauend haben sie einen komplett diodengepumpten Festkörperlaser der Ein-Petawatt-Klasse, genannt POLARIS (Petawatt Optical Laser Amplifier for Radiation Intensive Experiments), entwickelt.

Dieses System wird nach seiner Fertigstellung Laserpulse erzeugen, die mit einer Intensität von 10 hoch 21 Watt/Quadrat-cm auf ein Ziel fokussiert werden können. Was das bedeutet, beschreibt Dr. Kaluza mit einem Vergleich: Nimmt man das gesamte auf die Erdoberfläche fallende Sonnenlicht und konzentriert es auf einem Fleck von einem Zehntel Millimeter Durchmesser, dann erreicht man etwa die angestrebte Intensität.

Dr. Kaluza nennt weitere Anforderungen an den Laser. Er soll eine extrem kurze Pulsdauer von 150 Femtosekunden haben. Die Pulsenergie soll 150 Joule erreichen. Und der Laser soll mit einer Pulsfolge von einem Schuss pro zehn Sekunden abgefeuert werden können. Von diesen Parametern ist die neue Forschergruppe noch etwas entfernt. "In einem ersten Schritt wollen wir alle 10 bis 30 Sekunden einen Puls erzeugen", sagt Dr. Kaluza. Bereits das wäre für solche Pulsenergien weltweit ein Spitzenwert. Die Leistung des Lasers soll Ende des Jahres 0,1 Petawatt erreichen. "Schon damit können wir erste Experimente zur Elektronen- und Ionenbeschleunigung durchführen, um die Physik der Wechselwirkungen zu studieren", erklärt der 31-jährige Wissenschaftler, der die neue Nachwuchsforschergruppe seit Jahresbeginn leitet. Zuvor hat der aus Gießen stammende Physiker an der Technischen Universität München, am Max-Planck-Institut für Quantenoptik sowie am Imperial College London mit ähnlichen Lasersystemen geforscht.

Die potenziellen Anwendungsmöglichkeiten eines Höchstleistungslasers sind vielfältig. So könnte er in Zukunft monoenergetische Protonen- oder Ionenstrahlen für die oben beschriebene Tumortherapie liefern, sagt Dr. Kaluza. Die Eigenschaften eines solchen Protonenstrahls müssen dafür so präzise eingestellt und kontrolliert werden, dass nur das kranke Tumorgewebe zerstört wird. "POLARIS ist ein sehr aussichtsreicher Kandidat für solche Anwendungen", weiß Dr. Kaluza. Auf der Technologie von POLARIS aufbauende Lasersysteme wären zudem - im Vergleich zu kilometergroßen Beschleunigeranlagen - kompakt genug, um sie auch in Krankenhäusern betreiben zu können. Eine weitere Anwendungsmöglichkeit wäre die Herstellung von radioaktiven Nukliden für die Medizin mit einer genau definierten Zerfallsdauer für die Diagnose.

Mit POLARIS können aber auch extrem kurze Röntgenpulse oder ein Röntgenlaser erzeugt werden. Neben der Realisierung einer extrem intensiven Röntgenquelle für lithographische Techniken wäre auch die Analyse chemischer Reaktionen möglich. Diese laufen so schnell ab, dass sie mit herkömmlichen Methoden nicht vollständig erfasst werden können. "Das wäre etwa so, als würde man versuchen, bei einem vorbeifahrenden Formel-1-Rennwagen die Aufschrift auf den Reifen mit dem bloßen Auge zu lesen", sagt Malte Kaluza. "Teilt man unseren Laser in zwei Strahlen, könnte mit der einen Hälfte z. B. eine Reaktion ausgelöst werden. Mit der anderen Hälfte erzeugen wir dann einen ultra-kurzen Röntgenblitz, mit dem wir dann in mehreren aufeinanderfolgenden Aufnahmen den Ablauf der chemischen Reaktion in Einzelschritten sichtbar machen können", beschreibt er eine weitere mögliche Anwendung von POLARIS.

Die Arbeit der von Dr. Kaluza geleiteten Nachwuchsforschergruppe, der 16 Mitarbeiter angehören, wird vom Bundesforschungsministerium gefördert. Bis Ende 2010 stellt das Ministerium dafür fünf Millionen Euro zur Verfügung.

Kontakt:
Dr. Malte Kaluza
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947280
E-Mail: kaluza[at]ioq.uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Höchstleistungslaser Laser Lasersystem POLARIS Quantenelektronik

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Smarte Rollstühle, vorausschauende Prothesen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics