Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebserkrankungen – Gezielte Diagnose und individualisierte Therapie

10.04.2015

Noch immer ist Krebs die zweithäufigste Todesursache in Deutschland. In den vergangenen Jahren konnten jedoch beträchtliche Fortschritte in seiner Therapie wie auch Diagnostik verzeichnet werden. Moderne nuklearmedizinische Untersuchungen sowie innovative zielgerichtete nuklearmedizinische Therapien spielen bei diesen Fortschritten eine entscheidende Rolle.

Die Nuklearmedizin diagnostiziert Erkrankungen mithilfe radioaktiver Substanzen – so genannter Marker – die spezifisch an Tumorzellen binden und teils auch in diesen gespeichert werden. Um die betroffenen Zellen sichtbar machen zu können, werden dem Patienten geeignete, radioaktiv markierte Substanzen – so genannte Radiopharmaka – verabreicht.

Sie bestehen aus einem radioaktiven Teilchen, dem Radioisotop, und einer zweiten Substanz. Diese bindet im Körper an einen bestimmten Zelltyp und sorgt so dafür, dass das Radioisotop gezielt zu den krankhaft veränderten Zellen gelangt. So kommt es zu einer starken Anreicherung im Tumor bei nur geringer Aufnahme in gesunden Organen.

Über die schwache radioaktive Strahlung der Tumorzellen wird die Verteilung der Substanzen und somit die Verteilung der Krebszellen mittels der Positronenemissionstomographie (PET) oder der Single-Photon-Emission-Computer-Tomographie (SPECT) bildhaft dargestellt. Die Nuklearmedizin nutzt hierbei also gezielt solche Eigenschaften der Krebszellen aus, die sie von den gesunden Körperzellen unterscheiden und die so einen genauen Nachweis der Erkrankung ermöglichen.

Durch diese hervorragende Diagnostik kann die Ausbreitung von Krebs genauer dargestellt, ein Rückfall der Erkrankung frühzeitig erkannt und somit die Therapie besser auf den einzelnen Patienten zugeschnitten werden.

Die gleichen Substanzen, die zur Krebserkennung verwendet werden, können ebenso zur Therapie der Erkrankung genutzt werden. Dies geschieht, indem ein weiteres, therapeutisch wirkendes radioaktives Element an die Tumorzellen gekoppelt wird, das eine gezielte „innere Bestrahlung“ der Krebszellen ermöglicht und diese so zerstört.

Auf diese Weise lassen sich auch kleinste und weit verstreute Tumore effektiv und schonend behandeln. Dieses Prinzip der Diagnostik und Therapie mit der gleichen Substanz wird auch „Theragnostik“ genannt. Ein Paradebeispiel hierfür ist die Radiojodtherapie bei Schilddrüsenkrebs.

Für die Diagnostik und Therapieplanung wie auch für die Therapie selbst wird hier jeweils ein anderes radioaktives Jod-Isotop – also ein anderes radioaktives Teilchen – verwendet. Dadurch kann die Radiojodtherapie auf die Bedürfnisse des einzelnen Patienten zugeschnitten werden, was durch dieses individualisierte Therapiekonzept bei Schilddrüsenkrebs zu einer exzellenten Heilungsrate führt.

Das Prinzip der „Theragnostik“ wurde inzwischen auch auf weitere Krebserkrankungen ausgeweitet. So wird bei neuroendokrinen Tumoren und metastasierten Prostatakarzinomen ebenfalls jeweils die gleiche Substanz für Diagnostik und Therapie verwendet.

Die nuklearmedizinische Diagnostik hat sich bei diesen beiden Krebsarten bereits zu einer Standarduntersuchung entwickelt und auch die entsprechenden Therapien (Peptid-Radio-Rezeptor-Therapie und 177Lu-PSMA-Therapie) haben entscheidend zur Verbesserung der Prognose der hiervon betroffenen Patienten beigetragen.

Aktuelle Forschungsprojekte arbeiten daran, die „Theragnostik“ auch auf weitere Krebsarten anwendbar zu machen, um mehr Krebspatienten eine solche maßgeschneiderte Diagnostik und Therapie anbieten zu können. Zudem sind bereits etablierte Therapien entscheidend weiterentwickelt worden.

So kann mit Hilfe modernster Bildgebung wie der PET/CT und der SPECT/CT die Behandlung von Lebertumoren und Lebermetastasen mittels der Radioembolisation (auch SIRT genannt) noch zielgenauer erfolgen und auf den individuellen Patienten zugeschnitten werden. Der Behandlungserfolg wird dadurch maximiert und Nebenwirkungen werden weitgehend vermieden.

Die „Theragnostik“ bildet ein Schwerpunktthema auf der 53. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin e.V., der NuklearMedizin 2015, die vom 22. bis 25. April 2015 in Hannover stattfindet. Zudem wird sich am 22. April 2015 auch das Vorkongress-Symposium „Bildgesteuerte Therapie: Neue Horizonte“ im Vorfeld der Jahrestagung mit diesem Thema auseinandersetzen.

In bewährter Weise bietet die Kombination aus Kongress, für den national und international renommierte Referenten gewonnen werden konnten, einem interaktiven Fortbildungsprogramm sowie der in Deutschland größten, branchenspezifischen Industrieausstellung eine ideale Plattform für wissenschaftlichen Austausch und Weiterbildung. Damit zählt die NuklearMedizin 2015 zu den international bedeutendsten und größten Tagungen für Nuklearmedizin. In diesem Jahr werden rund 2.000 Teilnehmer – Mediziner, Naturwissenschaftler und medizinisch-technisches Personal – erwartet.

Sämtliche Informationen zur NuklearMedizin 2015 stehen auf der Kongresshomepage http://www.nuklearmedizin2015.de zur Verfügung. Dort ist auch die Presseakkreditierung zum Kongress möglich.

Kontakt:
Deutsche Gesellschaft für Nuklearmedizin e.V.
Pressereferat, Stefanie Neu
Nikolaistraße 29, D-37073 Göttingen
Tel. 0551 / 48857-402, info@nuklearmedizin.de
http://www.nuklearmedizin.de

Weitere Informationen:

http://www.nuklearmedizin2015.de - Kongresshomepage der NuklearMedizin 2015
http://www.nuklearmedizin.de - Homepage der Deutschen Gesellschaft für Nuklearmedizin e.V.

DGN e.V. Pressestelle | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Kongress Meditation und Wissenschaft
19.01.2018 | Universität Witten/Herdecke

nachricht LED Produktentwicklung – Leuchten mit aktuellem Wissen
18.01.2018 | Haus der Technik e.V.

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie