Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleinsatellit „TechnoSat“ startet am 14. Juli um 8.36 Uhr / Übertragung per Livestream

13.07.2017

Ab in den Orbit

Kleinsatellit „TechnoSat“ der TU Berlin startet am 14. Juli 2017 um 8.36 Uhr MESZ vom Weltraumbahnhof Baikonur / Übertragung per Livestream

Am Freitag, 14. Juli 2017 wird der zwölfte Kleinsatellit der TU Berlin gestartet. „TechoSat“ wird voraussichtlich um 8.36 Uhr mitteleuropäischer Sommerzeit (MESZ) vom Kosmodrom im kasachischen Baikonur an Bord einer Sojus-Rakete in einen Orbit von 660 Kilometer Höhe gebracht. Die Separation im Zielorbit erfolgt nach 8794,2 Sekunden, also rund 2 Stunden und 26,5 Minuten.

Raumfahrtbegeisterte können den Start im Livestream verfolgen. Entwickelt wurde „TechnoSat“ am Fachgebiet Raumfahrttechnik von Prof. Dr.-Ing. Klaus Brieß vom Institut für Luft- und Raumfahrt der Fakultät V Verkehrs- und Maschinensysteme. Das Projekt wird vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Energie gefördert.

Technologieerprobungsmission mit sieben Experimenten

Der achteckige und rund 20 Kilogramm schwere „TechnoSat“ soll auf seiner mindestens einjährigen Mission neue Technologien unter Weltraumbedingungen testen. In den 305 x 465 x 465 Millimetern sind insgesamt sieben experimentelle Nutzlasten verbaut, deren Funktion und Leistungsfähigkeit im Orbit erprobt werden sollen.

„‘TechnoSat‘ hat unter anderem einen fluiddynamischen Aktuator mit an Bord. Das ist ein neuartiges Konzept zur Ausrichtung von Satelliten“, erklärt Projektleiter Merlin Barschke. „Der Aktuator ist nicht wie sonst üblich mit einem Elektromotor ausgestattet, sondern mit einer elektromagnetischen Pumpe. Diese leitet ein flüssiges Metall durch einen ringförmigen Kanal, sodass ein hohes Drehmoment entsteht. Dadurch kann der Satellit schnell und präzise ausgerichtet werden. Ein entscheidender Vorteil dieses Konzepts ist, dass keine beweglichen mechanischen Teile benötigt werden, die den Belastungen des Raketenstarts standhalten müssen.“

„TechnoSat“ testet außerdem Laser-Retroreflektoren als gemeinsames Experiment der TU Berlin, des Helmholtz-Zentrums Potsdam, der Austrian Academy of Sciences sowie dem German Space Operations Centre.

Laserreflektoren werden auf Satelliten für die hochgenaue Vermessung der Satellitenbahn vom Boden eingesetzt. Hierfür wird ein Laserstrahl auf den Satelliten gerichtet und die Zeit gemessen, bis dieser Strahl zurück auf die Erde reflektiert wird. Die so gewonnenen Informationen können beispielsweise genutzt werden, um die bordeignen Positionssensoren zu evaluieren – oder eben auch, um die Bahn von Satelliten genau zu bestimmen, die nicht mehr betrieben werden.

„Für das Experiment setzen wir 14 kleine, günstige und kommerzielle Reflektoren ein“, erläutert Barschke das Experiment. „Wir wollen damit zeigen, dass diese verhältnismäßig günstigen und nicht speziell für diese Anwendung ausgelegten Reflektoren dennoch hierfür genutzt werden können.“

Diese und die weiteren fünf experimentellen Nutzlasten werden vom fachgebietseigenen Raumflugkontrollzentrum in Berlin-Charlottenburg betrieben. „Sobald der Satellit im Empfangsbereich unserer Bodenstation ist, werden wir erste Telemetrie-Daten abfragen. Anschließend überprüfen wir alle Systeme und führen Funktionstests durch, um dann mit den Experimenten fortzufahren“, fasst Merlin Barschke die geplanten Schritte zusammen.

Studentische Ausbildung mit Praxisnähe

Mit der Entwicklung und den Betrieb von „TechnoSat“ konnte das Institut für Luft- und Raumfahrt der TU Berlin die Praxisnähe seiner studentischen Ausbildung weiter ausbauen. Denn das Projekt wurde von Promovierenden und studentischen Mitarbeitern entwickelt, gebaut und für ihren Flug in den Weltraum qualifiziert. Außerdem haben Studierende sie dabei in Form von Abschlussarbeiten unterstützt.

Livestream des Raketenstarts

https://www.youtube.com/user/tvroscosmos
http://www.russian.space/306/
http://www.russian.space/466/
http://online.roscosmos.ru/

Fotos zum Download
www.tu-berlin.de/?187366

Projektseite TechnoSat
www.tu-berlin.de/?133828

Weitere Informationen erteilt Ihnen gern:
Merlin Barschke, M.Sc.
TU Berlin
Institut für Luft- und Raumfahrt
Tel.: 030 314-28743
E-Mail: merlin.barschke@tu-berlin.de

Weitere Informationen:

https://www.youtube.com/user/tvroscosmos
http://www.russian.space/306/
http://www.russian.space/466/
http://online.roscosmos.ru/
http://www.tu-berlin.de/?187366
http://www.tu-berlin.de/?133828

Stefanie Terp | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Aktuator Kleinsatellit Livestream Luft- und Raumfahrt Orbit Raumfahrt Satellit

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht 11. BusinessForum21-Kongress „Aktives Schadenmanagement"
22.09.2017 | BusinessForum21

nachricht Internationale Konferenz zum Biomining ab Sonntag in Freiberg
22.09.2017 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie