Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Licht ins Dunkel: Die schwierige Suche nach Therapien für erbliche Netzhaut-Erkrankungen

30.03.2007
Neue Erkenntnisse über die Entstehung erblicher Netzhaut-Erkrankungen stehen am 30. und 31. März 2007 in Potsdam im Mittelpunkt des 3. internationalen Pro Retina-Forschungskolloquiums "Retinal Degeneration: Genes - Progression - Therapy".

Rund 150 Wissenschaftler werden bei der Tagung ausloten, welche Möglichkeiten sich aus den neuen Erkenntnissen ableiten lassen, um die Diagnostik von Netzhaut-Erkrankungen zu verbessern. Vor allem aber geht es um die Entwicklung von Therapien. Denn bislang gibt es bei diesen Leiden in den allermeisten Fällen noch keine Behandlungsmöglichkeit. Die Forscher präsentieren Konzepte für Stammzell-basierte und gentherapeutische Therapiestrategien.

In Deutschland wird eines von 4000 Kindern mit einer erblichen Netzhaut-Erkrankung geboren. Am häufigsten ist die sogenannte Retinitis Pigmentosa - an ihr leiden hierzulande 30000 Patientinnen und Patienten. Das Leiden beginnt meistens mit Störungen des Dämmerungssehens, gefolgt von Nachtblindheit. Dann kommt es typischerweise durch fortschreitende Einengung des Gesichtsfeldes zum "Tunnelblick". Oft steht am Ende die völlige Erblindung. Hinzu kommt eine große Zahl weiterer genetisch bedingter Erkrankungen der Netzhaut, die teilweise sehr selten sind. Sie haben exotische Namen wie "Sorsby-Fundusdystrophie" oder "Doyne'sche Honigwabendystrophie". Da erbliche Netzhaut-Leiden - verglichen mit den "Volkskrankheiten" - selten auftreten, gelten sie als "Orphan Diseases", Waisen-Krankheiten.

Diagnose ja, aber keine Therapie. All diese Leiden haben eines gemeinsam: Die Augenärzte können den Untergang der Nervenzellen in der Retina zwar diagnostizieren, oft schon im Kindesalter, doch sie können ihren Patienten in den allermeisten Fällen keine Therapie anbieten. "Wirksame therapeutische Optionen haben wir nicht", stellt Professor Klaus Rüther von der Augenklinik der Berliner Charité fest.

... mehr zu:
»Mutation »Netzhaut-Erkrankung

Damit nicht genug: Die Patientinnen und Patienten sehen sich nach der Diagnose in den meisten Fällen mit einer ungewissen Zukunft konfrontiert: Die Erkrankungen entwickeln sich individuell unterschiedlich. In manchen Fällen schreiten sie langsam voran, in anderen geht es schneller. Manche Patienten erblinden völlig, bei anderen ist die Sehfähigkeit "nur" stark eingeschränkt. "Diese Ungewissheit wird für die Patienten zu einem unsichtbaren, stillen Begleiter", sagt Franz Badura, Vorstandsmitglied der Pro Retina Stiftung und Fachbereichsleiter Forschung und Therapie der Selbsthilfeorganisation Pro Retina e.V. Als Betroffener weiß Badura, was es für Menschen bedeutet, wenn sie beobachten, wie ihre Sehfähigkeit nachlässt, sie aber nicht wissen, wie sich die Erkrankung weiterentwickeln wird.

Eine Krankheit mit vielen Gesichtern. Woran dieses liegen könnte, beginnt sich mittlerweile abzuzeichnen: Bislang konnten Forscher allein mehr als 45 verschiedene Erbfaktoren (Gene) im menschlichen Erbgut identifizieren, deren Veränderung (Mutation) eine Retinitis Pigmentosa verursacht. Die mutierten Gene liegen auf verschiedenen Erbträgern (Chromosomen) in den Zellen, einige befinden sich auf den Geschlechtschromosomen. Hinzu kommt, dass auch die Mutationen der betreffenden Gene vielfältig sein können: So haben die Wissenschaftler beispielsweise allein über 100 verschiedene Mutationen in jenem Gen nachweisen können, in dem die "Bauanleitung" des Sehpigments Rhodopsin verschlüsselt ist.

Bis heute konnten Forscher mehr als 140 Gene charakterisieren und ursächlich den verschiedenen erblichen Augen-Leiden zuordnen - und noch wächst die Zahl ständig. Die erblichen Netzhaut-Erkrankungen, so viel steht fest, sind deutlich komplexer als sich Forscher und Ärzte noch vor wenigen Jahren vorgestellt haben.

Suche nach den Wurzeln im genetischen Untergrund. Auch beim Forschungskolloquium der Pro Retina Stiftung präsentieren die Wissenschaftler neue Erkenntnisse, welche Gene an der Entstehung der verschiedenen Netzhaut-Erkrankungen beteiligt sind. Die Suche nach den Wurzeln der Leiden im genetischen Untergrund ist für die Diagnostik und zukünftige Therapien von großer Bedeutung. Denn das Wissen um die genetische Ursache dürfte in der Zukunft beispielsweise dem Arzt die Prognose, also die Abschätzung des weiteren Verlaufs eines individuellen Krankheitsfalls, erleichtern - und damit vielen Patienten Ängste und Unsicherheit nehmen können.

Inzwischen geht es den Forschern aber bereits um die nächsten Schritte: "Wir analysieren die komplexen Netzwerke aus Genen und Proteinen, deren Fehlfunktion die jeweilige Erkrankung verursacht", erklärt Professor Bernhard Weber, Humangenetiker an der Universität Regensburg. So wird beispielsweise eine spezielle Form der Retinitis Pigmentosa, das Bardet-Biedl-Syndrom von Mutationen in mindestens elf Genen verursacht, die, so Weber, "alle im gleichen funktionellen Netzwerk in der Zelle agieren". Welche Aufgaben dieses und andere Netzwerke in den Retinazellen haben, beginnen die Forscher nun seit einiger Zeit intensiv auszuleuchten.

Modellkrankheiten und Tiermodelle. Dabei spielen Modellkrankheiten und Tiermodelle eine große Rolle: "Bestimmte erbliche Netzhaut-Erkrankungen, etwa manche Formen von Nachtblindheit oder Störungen des Farbensehens, verschlechtern sich im Laufe des Lebens nicht - sie werden daher "stationäre Erkrankungen" genannt, um sie von den "progressiven" abzugrenzen, die im Laufe der Jahre fortschreiten. "Wenn wir solche Krankheiten, hinter denen oft ein einziger spezieller Gendefekt steht, genau untersuchen", sagt Professor Olaf Strauß von der Abteilung für Experimentelle Ophthalmologie der Universität Hamburg, "lernen wir dabei auch etwas über die komplexeren Formen der Netzhauterkrankungen sowie über Augenleiden wie die altersbedingte Maculadegeneration, bei der Gene und Umweltfaktoren zusammenwirken, und die die häufigste Erblindungsursache in Industrienationen ist."

Ein Beispiel dafür ist die "Leber'sche kongenitale Amaurose". "Die Identifikation des Gens, dessen Mutation für diese Erkrankung verantwortlich ist, lieferte den Forschern wichtige Einsichten in grundlegende Prozesse der Signalverarbeitung", erklärt Strauß. Darum gelang es, den Krankheitsmechanismus aufzuklären. Dies schuf die Grundlage dafür, dass Wissenschaftler an einer Hunderasse, bei der diese Mutation natürlicherweise vorkommt, den Gendefekt durch eine Genübertragung erfolgreich korrigieren konnten.

Lernen können die Forscher auch viel durch Untersuchungen an Mäusen: Die meisten Erkenntnisse, welche die Forscher in Potsdam über Krankheitsmechanismen präsentieren, stammen von Experimenten mit Nagern, bei denen Gene gezielt abgeschaltet oder verändert wurden, um menschliche Augenleiden zu simulieren. Dabei dringen sie immer tiefer in die komplizierte Signalübertragung in der Netzhaut und in die biochemischen Prozesse der Sehzellen ein. So verstehen Sie inzwischen besser, warum beispielsweise bei Morbus Stargarth das Recycling des Vitamins A gestört ist oder wie und warum es zur Anreicherung von Schadstoffen wie Lipofuscin in der Netzhaut kommt, welche die Nervenzellen in der Retina schädigen.

Hoffnung auf neue Therapien. Letzendlich verfolgen die Forscher aber vor allem ein Ziel: "Wenn wir die grundlegenden Krankheitsprozesse besser verstehen, eröffnen sich sicherlich auch Optionen, gezielt in diese einzugreifen", formuliert Bernhard Weber. Und Klaus Rüther ergänzt: "Schon heute wissen wir beispielsweise, dass bei Patienten mit bestimmten Genveränderungen die Krankheit langsamer voranschreitet, wenn sie ihre Augen vor blauem Licht schützen." Alleine eine trennschärfere Diagnostik, die aufgrund der neuen Erkenntnisse möglich wird, kann für Patientinnen und Patienten also bereits von Nutzen sein.

Gen-Blockade. Dass es prinzipiell möglich ist, ein mutiertes Gen bei erblichen Augenleiden gezielt zu behandeln, haben Forscher an Mäusen und Hunden bereits demonstriert. In Potsdam berichten Wissenschaftler nun über Strategien, veränderte Gene gezielt auszuschalten. Möglich ist dies mit Hilfe der sogenannten RNA Interferenz: Dabei wird nicht das Gen im Erbgut blockiert, sondern jenes kurz RNA genannte Botenmolekül, das die genetische Information zu den Eiweißfabriken der Zellen transportiert. Allerdings stecken diese Ansätze noch im frühen Experimentierstadium: Die Forscher, etwa Naomi Chadderton oder Marius Ader vom Trinity College in Dublin, arbeiten mit Zellkulturen und Mäusen. Bei ihren Experimenten konnten die Forscher zeigen, dass ihr Ansatz prinzipiell zu funktionieren scheint.

Stammzellen fürs Auge. Ebenfalls mit Mäusen arbeiten jene Wissenschaftler, etwa Dr. Udo Bartsch von der Klinik für Augenheilkunde der Universität Hamburg und Klaus Rüther von der Charité, die Stammzell-basierte Ansätze verfolgen. Die Forschergruppen haben begonnen, neben embryonalen Stammzellen von Mäusen beispielsweise auch multipotente neurale Stammzellen sowie Vorläuferzellen aus der Netzhaut in der Zellkultur zu züchten und in Mäuseaugen zu implantieren. "Dabei wollen wir zunächst herausfinden", erklärt Klaus Rüther, "ob solche Transplantationen überhaupt sicher sind." Ebenfalls überprüfen die Wissenschaftler die Möglichkeit, verschiedene Stammzellen vor einer Transplantation durch eine Genübertragung umzuprogrammieren. So ließen sich die Zellen als Vehikel für heilsame Gene nutzen, die entweder die Defekte "vor Ort" ausgleichen, oder beispielsweise Wachstumsfaktoren produzieren, welche den Untergang der Nervenzellen verhindern können.

Noch lässt sich nicht abschätzen, ob und wann solche Ansätze zu konkreten Therapien führen werden. "Doch wir sind überzeugt", sagt Franz Badura, "dass die Umsetzung der Laborerkenntnisse in neue Behandlungskonzepte durch den Austausch zwischen Ärzten und Grundlagenforschern weiter an Fahrt gewinnen wird." Und Klaus Rüther ergänzt: "Der Weg von der Maus zum Menschen wird superkurz, wenn wir beweisen können, dass unsere Ansätze wirksam sind."

Pressekontakt:
Barbara Ritzert · ProScience Communications GmbH
Andechser Weg 17 · 82343 Pöcking
Tel: 08157/9397-0 · Fax:08157/ 9397-97
E-Mail: ritzert@proscience-com.de

Barbara Ritzert | idw
Weitere Informationen:
http://awmf.org

Weitere Berichte zu: Mutation Netzhaut-Erkrankung

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal
18.08.2017 | Bergische Universität Wuppertal

nachricht Einblicke ins menschliche Denken
17.08.2017 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie