Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alles dreht sich um Silicium - Internationale Tagung in Würzburg

16.06.2005


Das Element Silicium spielt in Natur und Technik eine vielfältige und wichtige Rolle, ob in Sand (Siliciumdioxid, SiO2) oder Gesteinen (Silicate), als Silicium-Wafer (für elektronische Anwendungen) oder in Siliconen, den technisch bedeutenden Polymeren. Die Chemie des Siliciums ist noch lange nicht ausgereizt, was das 14th International Symposium on Organosilicon Chemistry, kombiniert mit den 3rd European Organosilicon Days, vom 31. Juli bis 5. August in Würzburg zeigen wird. Von der Grundlagenforschung bis zur praktischen Anwendung werden den über 600 Teilnehmern aus Akademia und Industrie die neuesten Aspekte einer facettenreichen Silicium-Chemie und -Technologie vorgestellt. Die Universität Würzburg organisiert gemeinsam mit der Gesellschaft Deutscher Chemiker (GDCh) dieses Wissenschaftlertreffen.

... mehr zu:
»GDCh »Organosilicon »Plenarvortrag

Den Grundlagenforscher interessieren vor allem die faszinierenden Strukturen und Bindungsverhältnisse neuartiger siliciumorganischer Verbindungen, die Ausgangspunkt neuer Materialien für neue Anwendungen sein könnten. Professor Dr. Mitsuo Kira (Tohoku University, Sendai, Japan) berichtet in einem Plenarvortrag über seine Forschungsarbeiten, u.a. über ungesättigte Silicium-Verbindungen, für die er in Würzburg auch den Wacker Silicone Award erhält - neben dem Kipping Award die höchste internationale Auszeichnung auf dem Gebiet der Silicium-Chemie.

Eine wachsende Bedeutung besitzen Übergangsmetall-Silicium-Systeme für neue katalytische Prozesse, z.B. zur Herstellung von Verbindungen mit Silicium-Kohlenstoff-Bindungen. Effiziente Katalysatoren werden nicht nur in der Forschung, sondern vor allem in der chemischen Technik wegen der Notwendigkeit wirtschaftlicher Prozessführung benötigt. Professor Dr. T. Don Tilley (University of California, Berkely, USA) präsentiert in einem weiteren Plenarvortrag seine erfolgreichen Forschungsarbeiten zu siliciumhaltigen Übergangsmetall-Katalysatoren.


Polymere, die Silicium und Übergangsmetalle enthalten, weisen zum Teil höchst interessante physikalische und chemische Eigenschaften auf und bieten sich für die Entwicklung neuer Materialien an. Sie können beispielsweise einen Zugang zu funktionellen nanoskopischen Systemen bieten, die nicht nur für die Katalyse geeignet sind, sondern auch als Ätzabdeckungen bei der Herstellung von mikroelektronischen Bauelementen. Die genannten Polymere können auch als Vorläufersubstanzen für keramische Materialien dienen, wie Professor Dr. Ian Manners von der University of Toronto, Kanada, in seinem Plenarvortrag ausführt. Auch am Max-Planck-Institut für Metallforschung und am Institut für Nichtmetallische Anorganische Materialien der Universität Stuttgart wird darüber gearbeitet, wie aus siliciumorganischen Verbindungen durch Thermolyse keramische Materialien wie Siliciumcarbid oder Siliciumnitrid hergestellt werden können. Über den Stand der Forschung berichtet Professor Dr. Fritz Aldinger.

Die bekanntesten Polymere der Silicium-Chemie sind die Silicone (Weltjahresproduktion im Megatonnen-Maßstab), deren Polymergerüst abwechselnd aus Silicium- und Sauerstoff-Atomen besteht. Diese als Öle, Kautschuke oder Harze hergestellten Polymere haben sich bereits zahlreiche Anwendungsgebiete erschlossen, beispielsweise in Brems- und hydraulischen Flüssigkeiten, Shampoos, Haar-Conditionern, Weichspülern, Schuhputzmitteln, Bautenschutzmitteln, Fugendichtmassen, Lackrohstoffen und Implantaten für den menschlichen Körper. Noch immer gibt es auf diesem Gebiet viele Neuentwicklungen, über die Dr. Iain A. MacKinnon, Dow Corning, Barry, Wales, berichtet.

Siliciumorganische Verbindungen sind in jüngster Zeit auch für die medizinische Chemie interessant geworden. Über innovative chemische Strategien in der Medikamentenentwicklung auf der Basis siliciumorganischer Strukturen trägt Dr. Graham A. Showell, Paradigm Therapeutics, Cambridge, England, vor.

Das Studium der Chemie von Silicium-Oberflächen für die Entwicklung von molekularen Bauteilen auf Elektronik-Chips und für nanotechnologische Anwendungen stellt ein weiteres höchst aktuelles Forschungsgebiet dar. Die metallorganische Chemie an Silicium-Oberflächen folgt offenbar ganz anderen Mustern als die "normale" siliciumorganische Chemie und ist ein spannendes Gebiet chemischer Grundlagen- und Anwendungsforschung, mit der sich Frau Professor Jillian M. Buriak von der University of Alberta, Edmonton, Kanada, beschäftigt.

Von der Technik zur Natur: Der Biochemiker Professor Dr. Manfred Sumper, Universität Regensburg, ist der Biomineralisation in Kieselalgen (Diatomeen) auf der Spur. Diese und andere marine Organismen "verarbeiten" in den Weltmeeren jährlich etwa 6,7 Gigatonnen Silicium zum Aufbau von SiO2-Biomineralen. Die aus SiO2 bestehenden Zellwände dieser Einzeller haben faszinierende geometrische Strukturen, die Species-spezifisch sind, also genetisch kontrolliert werden. Diese nanostrukturierten SiO2-Biomineralien sind sogenannte Verbundwerkstoffe mit Proteinen und langkettigen Polyaminen. Die organischen Komponenten haben offenbar Einfluss auf die SiO2-Strukturen der Zellwände. Vielleicht lassen sich aus der Biochemie der Diatomeen neue Erkenntnisse zum künstlichen Aufbau nanostrukturierter Materialien auf SiO2-Basis gewinnen.

Die Tagung endet mit einem Plenarvortrag von Professor Dr. Robert West, University of Wisconsin, Madison, USA, über Zukunftsperspektiven der Organosilicium-Chemie. West zählt zu den Pionieren auf diesem Gebiet und hat über Jahrzehnte dessen Entwicklung maßgeblich mit vorangetrieben.

Würzburg ist nicht von ungefähr Austragungsort des internationalen Silicium-Symposiums. An der Universität sowie im Fraunhofer-Institut für Silicatforschung wird Spitzenforschung auf dem Gebiet der Silicium-Chemie betrieben. Der Vorsitzende des Symposiums, der Würzburger Professor Dr. Reinhold Tacke, gehört zu den führenden Silicium-Chemikern Deutschlands.

Gesellschaft Deutscher Chemiker

Die Gesellschaft Deutscher Chemiker (GDCh) gehört mit rund 27.000 Mitgliedern zu den größten chemiewissenschaftlichen Gesellschaften weltweit. Ein bedeutendes Tätigkeitsfeld der GDCh ist die Organisation von Tagungen aus dem Bereich der Chemie und der molekularen Wissenschaften. Neben der GDCh-Jahrestagung, die 2005 unter dem Motto "Chemie schafft neue Strukturen" vom 11. bis 14. September in Düsseldorf stattfindet, gehört das 14th International Symposium on Organosilicon Chemistry zu den bedeutendsten GDCh-Veranstaltungen in diesem Jahr.

Dr. Renate Hoer | Gesellschaft Deutscher Chemiker
Weitere Informationen:
http://www.gdch.de

Weitere Berichte zu: GDCh Organosilicon Plenarvortrag

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht 11. BusinessForum21-Kongress „Aktives Schadenmanagement"
22.09.2017 | BusinessForum21

nachricht Internationale Konferenz zum Biomining ab Sonntag in Freiberg
22.09.2017 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie