Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Woher stammt die Nahrung im Ozean?

03.12.2013
Kieler Isotopenforscher auf Spurensuche in marinen Nahrungsnetzen

Die Ozeane bedecken fast 75 Prozent der Erdoberfläche und sind seit jeher eine wichtige Nahrungs- und Rohstoffquelle. Doch Überfischung, Meeresverschmutzung und Missmanagement bedrohen die marinen Ökosysteme und damit eine der wichtigsten Ressourcen der Erde.


Dr. Thomas Larsen untersucht im Isotopenlabor der Uni Kiel die Nahrungsbeziehungen in marinen Lebensräumen. Foto: Future Ocean, Christian Urban

Um diesen drohenden Verlust aufzuhalten, ist zunächst ein besseres Verständnis der auf den Ozean wirkenden Einflussfaktoren notwendig. Die Lebensräume im Meer bestehen aus unzähligen Organismen, die in weit verzweigten Nahrungsnetzen direkt oder indirekt voneinander abhängen.

Die darin enthaltenen Nahrungsbestandteile wie Aminosäuren, Kohlenhydrate oder Fette kommen nur zum Teil aus dem Meer, andere Quellen liegen an Land. Woher genau marine Lebewesen diese Grundbausteine des Lebens beziehen, ist auch heute noch wenig erforscht. Denn von welchem Organismus die Nahrungsbestandteile ursprünglich gebildet wurden, war bisher nicht mehr zurückzuverfolgen, sobald sie von einem Tier verdaut wurden.

Eine internationale Kooperation von Wissenschaftlern unter Beteiligung des Lebniz Labors für Isotopenanalyse der Christian-Albrechts-Universität zu Kiel (CAU) und des Kieler Exzellenzclusters „Ozean der Zukunft“ hat nun eine Methode vorgestellt, wie man mittels Isotopenanalyse vom spezifischen Fingerabdruck der Aminosäuren auf den Ursprungsorganismus schließen kann. Die Ergebnisse der Untersuchungen sind kürzlich im internationalen Fachmagazin PLOS one und in der aktuellen Ausgabe des Journals ESA Ecology erschienen.

Gemeinsam mit Forschenden aus Kalifornien und Alaska ist es dem Kieler Biologen Dr. Thomas Larsen vom Exzellenzcluster „Ozean der Zukunft“ nun gelungen, die Nahrung von marinen Lebewesen bis zu ihrem Ursprungsorganismus zurück zu verfolgen. Dazu konzentrierten sich die Forschenden auf Aminosäuren, die als Bausteine der Proteine extrem häufig vorkommen und in der Nahrung vieler Meereslebewesen zu finden sind. Sie entdeckten, dass jeder Organismus über eine charakteristische Signatur in seinen Aminosäuren verfügt.
Diese Spuren sind auf natürliche Isotopen-Variationen zurück zu führen und entstehen während der Biosynthese. Anhand dieses unverwechselbaren Fingerabdrucks der Aminosäuren kann nun zum ersten Mal festgestellt werden, welcher Organismus sie ursprünglich gebildet hat. So kann nachgewiesen werden, ob die von einem Tier mit der Nahrung aufgenommenen Aminosäuren z.B. von Algen, Bakterien, Pilzen oder Pflanzen stammen. Dieses Wissen lässt so auch Rückschlüsse über den Ort der Nahrungsaufnahme und damit die Ansprüche einer Art an ihren Lebensraum zu.

„Die nun zur Verfügung stehende Fingerabdruckmethode hilft insbesondere dabei, die Nahrungsbeziehungen in marinen Lebensräumen besser zu verstehen“, betont Dr. Thomas Larsen vom Leibniz Labor für Isotopenforschung an der CAU und Postdoktorand im Exzellenzcluster „Ozean der Zukunft“. In einer Untersuchung der Universität von Hawaii zur Anwendung gebracht, konnte das Verfahren seine Vorteile zunächst auf ganz praktische Weise unter Beweis stellen: Anders als z.B. bei der Ausstattung von Tieren mit Funksendern oder ähnlichem reicht hier eine rasch zu entnehmende Gewebeprobe aus, die Tiere werden nur minimal gestört. Damit eignet sich die Fingerabdruck-Methode besonders, um eine bedrohte Tierart wie die Suppenschildkröte Chelonia mydas zu untersuchen.
Vor allem brachte sie aber vielversprechende neue Erkenntnisse zum Fress- und Wanderungsverhalten dieser im zentralen Pazifik lebenden Meeresschildkröte. Die Tiere verbringen ihre Jugend auf offener See, als erwachsene Tiere leben sie vorwiegend im Küstenbereich. Während dieser Lebensabschnitte ernähren sie sich also von stark unterschiedlicher Nahrung: Auf See nehmen sie tierische Nahrung wie z.B. Quallen auf, während sie in Küstennähe auf pflanzliche Nahrungsquellen z.B. aus Seegräsern angewiesen sind. Um die schlechtere Qualität dieser pflanzlichen Nahrung zu kompensieren, greifen die Tiere auf symbiotische Mikroorganismen zurück. Sie leben im Verdauungstrakt der Tiere und bilden dort wichtige Aminosäuren, die nicht aus der minderwertigeren Pflanzennahrung aufgenommen werden können. Die unterschiedlichen Nahrungsquellen und die Beteiligung der Symbionten lassen sich anhand abweichender Aminosäure-Signaturen nachweisen.

Anders als bisher angenommen suchen aber gelegentlich auch erwachsene Suppenschildkröten zum Fressen das offene Meer auf. Dies belegen die entsprechenden Aminosäure-Signaturen tierischen und marinen Ursprungs, die auch in der Nahrung adulter Tiere zu finden sind. Möglicherweise wechseln diese erwachsenen Schildkröten kurzfristig zu höherwertiger Nahrungsquellen, um zusätzliche Energiereserven beispielsweise für die Eiablage aufzubauen. Damit liefert die neue Methode erste Hinweise, dass es unter erwachsenen Suppenschildkröten verschiedene Strategien der Nahrungssuche gibt und die bisherigen Annahmen über das Wander- und Fressverhalten dieser Art zum Teil nicht mehr haltbar sind. Diese Erkenntnisse sind auch wichtig, um Schutzstrategien für den Lebensraum dieser bedrohten Meeresschildkröte zu optimieren. Insgesamt liefert die Fingerabdruck-Methode ein vielfältig einsetzbares Werkzeug, das künftig zum besseren Verständnis komplexer Nahrungsbeziehungen in marinen Lebensräumen beitragen kann.

Originalarbeiten:
[1] Thomas Larsen, Marc Ventura, Nils Andersen, Diane M. O’Brien, Uwe Piatkowski, Matthew D. McCarthy (2013). "Tracing Carbon Sources through Aquatic and Terrestrial Food Webs Using Amino Acid Stable Isotope Fingerprinting." Plos One 8(9). http://dx.doi.org/10.1371%2Fjournal.pone.0073441 For further information contact: Dr. Thomas Larsen, Christian-Albrechts-Universität zu Kiel; Email: tl@leibniz.uni-kiel.de or Phone: +49-431-880-3896,+49-177-829-3691 or Prof. Matthew McCarthy, University of California, Santa Cruz; Email: mccarthy@pmc.ucsc.edu or Phone: 01-831-459-4718

[2] Karen Elisabeth Arthur, Shaleyla Kelez, Thomas Larsen, C. Anela Choy, Brian N. Popp, (2013). "Tracing the biosynthetic source of essential amino acids in marine turtles using δ13C fingerprints." Ecology (In Press). http://www.esajournals.org/doi/abs/10.1890/13-0263.1 For further information contact: Prof. Brian N. Popp, University of Hawaii; Email: popp@hawaii.edu or Phone: 808-956-6206.

Links:
Exzellenzcluster „Ozean der Zukunft“
www.ozean-der-zukunft.de

Leibniz Labor für Altersbestimmung und Isotopenforschung, CAU Kiel
www.leibniz.uni-kiel.de

Kontakt:
Thomas Larsen,
Leibniz Labor für Altersbestimmung und Isotopenforschung, CAU Kiel
Tel.: 0431-880-3896, E-Mail: tl@leibniz.uni-kiel.de
Christian Urban, Öffentlichkeitsarbeit, Exzellenzcluster „Ozean der Zukunft“
Tel.: 0431-880-5627, E-Mail: curban@uv.uni-kiel.de

Link zur Pressemittteilung:
www.uni-kiel.de/pressemeldungen/index.php?pmid=2013-371-marine-food-sources

Christian Urban | Uni Kiel
Weitere Informationen:
http://www.leibniz.uni-kiel.de
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Dünenökosysteme modellieren
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Es wird zu bunt im Gillbach: Weitere nichtheimische Buntbarschpopulation in Deutschland nachgewiesen
22.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie