Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Die Welt ist nicht genug" - Realistische Modelle agentenbasierter Systeme eröffnen neue Möglichkeiten

11.11.2005


Ein internationales Wissenschaftlerteam hat eine neue Strategie entwickelt, um agentenbasierte Systeme aller Art ausreichend realistisch abzubilden und so mit Hilfe von Computermodellen Entwicklungen zu verstehen und vorherzusagen. Die Wissenschaftler um den Ökologen Volker Grimm vom Umweltforschungszentrum Leipzig-Halle (UFZ) stellen diese Form der Modellierung in der neuesten Ausgabe des renommierten Wissenschaftsmagazins "Science" (Vol. 310, Nr. 5750 vom 11. November 2005) vor. Die musterorientierte Modellierung sei nicht nur in der Umweltforschung einsetzbar, sondern überall dort, wo agentenbasierte komplexe Systeme existieren, also beispielsweise auch in Finanzmärkten, der Verkehrs- oder Stadtplanung.



James Bond als Vorbild



Sie sind überall: Kunden im Supermarkt, Makler an der Börse oder Bäume im Wald - Agenten. Diesen Begriff haben Wissenschaftler eingeführt, um Individuen aller Art zu beschreiben und modellierbar zu machen, damit Prozesse in Natur oder Gesellschaft besser verstanden werden. Beim Wort Agent denken viele an James Bond, den Geheimagenten im Dienste ihrer Majestät. Was macht aber 007 überhaupt zu einem Agenten? "Er hat einen Auftrag, aber wie er diesen Auftrag erfüllt, ist ihm selbst überlassen. Er ’agiert’ autonom und passt seine Entscheidungen den jeweiligen Umständen an. Und das ist es, was wir auch für die Agenten der Ökologie annehmen, die einzelnen Organismen. Sie haben den Auftrag ihre Gene weiterzugeben, also möglichst viele überlebende Nachkommen zu erzeugen", sagt Dr. Volker Grimm. "Aber die Organismen müssen selbst entscheiden, wie sie ihr Ziel erreichen: Bin ich hungrig, dann muss ich das Risiko in Kauf nehmen, bei der Nahrungssuche gefressen zu werden. Bin ich satt, dann bleibe ich lieber in Sicherheit." Allen Agenten, ob James Bond, Autofahrer oder Braunbär, ist gemeinsam, dass sie diskrete autonome Einheiten sind, die ein Ziel verfolgen und die ihre Entscheidungen an ihre Umgebung anpassen.

Ohne Regelmäßigkeiten keine Wissenschaft

Agentenbasierte Systeme sind meist so komplex, dass sie nur in einzelnen Aspekten beschreibbar sind. Niemand ist beispielsweise in der Lage, die komplette Entwicklung einer Millionenmetropole mit allen sozialen und ökonomischen Aspekten im Computer zu simulieren. Einzelne Aspekte wie beispielsweise der Wasserverbrauch dagegen sind in Modellen darstellbar. Doch wie überall im Leben stecken auch hier die Tücken im Detail. Modelle sind nur dann wirklich brauchbar, wenn sie nicht zu komplex sind. Schon Albert Einstein soll gesagt haben: "Alles sollte so einfach wie möglich gemacht werden, aber nicht einfacher". Gerade Sozialwissenschaftler hätten aber oft Skrupel, den Menschen einfach zu beschreiben, meint Volker Grimm. Dies führt zu Modellen, die entweder schwer zu durchschauen sind oder aber so abstrakt, dass ihr Bezug zur Realität unklar bleibt. Die in dem Science-Artikel beschriebene neue Strategie führt zu Modellen, die realistisch sind und trotzdem einfach genug, um verstanden zu werden.

Der Gebrauch von Mustern ist ein Weg, sich auf die notwendigsten Informationen über die interne Organisation komplexer Systeme zu konzentrieren. Muster sind Beobachtungen aller Art, die nichtzufällige Strukturen zeigen und deshalb Informationen enthalten über die Mechanismen, aus denen sie entstehen. Komplexe Systeme enthalten Muster auf verschiedenen hierarchischen Ebenen und Skalen. In Ökosystemen lassen sich beispielsweise Muster in Artenzusammensetzung, räumlichen Strukturen oder dem Verhalten individueller Organismen beobachten. "Wissenschaft fängt dann an, wenn ich irgendeine Regelmäßigkeit sehe. Wenn komplexe Systeme einfach nur komplex und chaotisch wären, dann könnte ich keine Wissenschaft komplexer Systeme machen. Wir müssen nur lernen, die Muster zu sehen. Das Besondere bei komplexen Systemen ist, dass es dort nicht mehr ausreicht, sich nur auf ein einziges Muster zu konzentrieren." Es kommt also darauf an, nicht nur den Wald vor lauter Bäumen zu sehen, d.h. die Muster zu erfassen, die den Wald kennzeichnen, sondern auch umgekehrt die Bäume vor lauter Wald zu sehen und ihr Verhalten angemessen zu beschreiben.

Bäume als Agenten

Ein Beispiel für solche Modelle ist ein simulierter Urwald. Niemand weiß, wie die Urwälder aussahen, die die Germanen einst vorfanden. Ursprüngliche Wälder gibt es im heutigen Deutschland nicht mehr. Doch wie lassen sich Wälder gestalten, die ihrem Original möglichst ähneln? Und wie sollte eine möglichst naturnahe Bewirtschaftung aussehen? Fragen, die mit einem Praxisexperiment nur schwer zu beantworten sind. Immerhin dauert ein kompletter Zyklus von Heranwachsen, Gedeihen und Verfallen im Buchenwald rund 250 Jahre. Computermodelle können dieses Dilemma lösen: Muster aus Resturwäldern in der Slowakei sowie das reichhaltige Erfahrungswissen der Förster über das Schicksal einzelner Buchen wurden verwendet, um ein einfaches und doch realistisches Buchen-Urwaldmodell zu entwickeln.

Der Aufwand für das Entwickeln und Testen derartiger Modelle kann, wie zum Beispiel im Fall eines Modells für artenreiche Tropenwälder, erheblich sein und Jahre in Anspruch nehmen. Aber es lohnt sich. "Wir verwenden die überprüften Modelle als virtuelle Laboratorien", erzählt Grimms Kollege Dr. Andreas Huth. "Beim Tropenwaldmodell können wir so mit der gedachten Kettensäge alle 10, 20 oder 30 Jahre durch den Modellwald gehen und einen bestimmten Prozentsatz der Bäume ernten, und dann schauen wir einfach, wie der Wald darauf reagiert. So finden wir heraus, wie man den Wald nachhaltig bewirtschaften kann, so dass auch künftige Generationen ihn nutzen können, sei es für Holz oder andere Zwecke." Musterorientierte Modelle haben die Wissenschaftler des UFZ auch entworfen, um die Ausbreitung der Braunbären in Österreich, die Wiedereinbürgerung des Luchses in Deutschland, oder die Tollwutgefahr durch infizierte Füchse vorherzusagen. Bei der Tollwutmodellierung geht es beispielsweise darum, die beste Bekämpfungsstrategie zu ermitteln und zu untersuchen, wie viele Impfköder überhaupt notwendig sind. Inzwischen ist die Tollwut in Deutschland fast ausgerottet. Trotzdem besteht die Gefahr, dass sie durch infizierte Füchse aus den Nachbarländern wieder eingeschleppt werden kann. Auch in Osteuropa sollen in den nächsten Jahren die Füchse per Köder geimpft werden. Per Computermodell wollen die UFZ- Wissenschaftler deshalb testen, wie das am kostengünstigsten geschehen kann.

Eine neue Systemtheorie?

"Es gab immer wieder Versuche, eine allgemeine Systemtheorie aufzustellen. Diese waren oft von stark vereinfachenden mathematischen Ansätzen geprägt." Für agentenbasierte Systeme sei dieser Ansatz zu unflexibel, meint Volker Grimm, der die neue Strategie als Vorbild sieht: "Es ging uns darum, über den ökologischen Tellerrand hinauszuschauen und zu Kollegen aus anderen Wissenschaftsdisziplinen zu sagen: Wir haben eine Strategie. Sie kann auch bei Systemen mit menschlichen Agenten zu Modellen führen, die das innere Gerüst dieser Systeme offen legt, so dass wir sie besser verstehen und steuern können." Im Hinblick auf eine allgemeine Theorie agentenbasierter Systeme ist Grimm optimistisch: "Die muster-orientierte Modellierung fasst gerade erst Fuß und wir erwarten eine schnelle Entwicklung in der Zukunft." Wahrscheinlich muss für eine neue Systemtheorie unsere Vorstellung von "Verstehen" modifiziert werden. Die amerikanischen Sozialwissenschaftler Epstein und Axtell jedenfalls vermuteten schon 1996, dass wir eines Tages vielleicht die Frage: "Kannst du es erklären?" interpretieren werden als "Can you grow it?", das heißt, sind wir in der Lage, das zu Erklärende im Computer "wachsen" zu lassen? Musterorientiertes Modellieren wird entscheidend zu diesem "Wachsen lassen" virtueller Welten beitragen. James Bond sei dank. Tilo Arnhold

Weitere fachliche Information über:

Dr. Volker Grimm
Umweltforschungszentrum Leipzig-Halle (UFZ)
Telefon: 0341-235-2903
volker.grimm@ufz.de
http://www.ufz.de/index.php?de=3679

oder über:
Doris Böhme / Tilo Arnhold
UFZ-Presse
Telefon: 0341-235-2278
presse@ufz.de

Das UFZ Leipzig-Halle ist das Helmholtz-Zentrum für Umweltforschung. Es erforscht die komplexen Wechselwirkungen zwischen Mensch und Umwelt in genutzten und gestörten Landschaften, insbesondere dicht besiedelten städtischen und industriellen Ballungsräumen sowie naturnahen Landschaften. Die Wissenschaftler des UFZ entwickeln Konzepte und Verfahren, die helfen sollen, die natürlichen Lebensgrundlagen für nachfolgende Generationen zu sichern.

Die Helmholtz-Gemeinschaft ist mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2.2 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Die insgesamt 24.000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Doris Böhme | idw
Weitere Informationen:
http://www.ufz.de/index.php?de=6365 -
http://www.sciencemag.org/content/current/

Weitere Berichte zu: Agent Computermodell Füchse Modellierung Organismus Systemtheorie UFZ

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Internationales Netzwerk bündelt experimentelle Forschung in europäischen Gewässern
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Nur die Spitze des Eisbergs / Monitoring-Programme unterschätzen den Einfluss des Menschen
16.03.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie