Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messstation für Treibhausgase im Fichtelgebirge eröffnet

22.05.2003


Der Präsident der Max-Planck-Gesellschaft, Prof. Peter Gruss (hinten links), gemeinsam mit Vertretern des Max-Planck-Instituts für Biogeochemie und des Bayerischen Rundfunks anlässlich der Inbetriebnahme der Klima-Messstation auf dem Ochsenkopf.


Max-Planck-Institut für Biogeochemie, Jena, eröffnet Messstation für Treibhausgase im Fichtelgebirge / Tag der Offenen Tür am 24. Mai 2003 von 14 bis 18 Uhr


Im oberfränkischen Fichtelgebirge, auf dem mehr als 1.000 Meter hohen Berg "Ochsenkopf", hat Prof. Peter Gruss, Präsident der Max-Planck-Gesellschaft, am Mittwoch, den 21. Mai 2003, gemeinsam mit Vertretern des Bayerischen Rundfunks eine Klima-Messstation eröffnet: Sie registriert auf regionaler Ebene den Austausch von Kohlendioxid. Die vom Max-Planck-Institut für Biogeochemie, Jena, in dem 163 Meter hohen Sendeturm aus Stahlbeton des Bayerischen Rundfunks untergebrachte Anlage ist Teil eines Pilotprojekts, das zu einem besseren Verständnis der Wechselwirkungen zwischen Vegetation, menschlichen Einflüssen und Klimaänderungen führen soll.

Anlässlich des Betriebsbeginns seiner Messstation auf dem Ochsenkopf lädt das Max-Planck-Institut für Biogeochemie die Öffentlichkeit am 24. Mai 2003, ab 14 Uhr ein, sich vor Ort über die Arbeiten zur Klimaforschung des Max-Planck-Instituts zu informieren. Dabei besteht die Möglichkeit, die Messstation zu besichtigen, Wissenschaftler stehen für Fragen und persönliche Gespräche bereit. An diesem Tag ist das Außengelände des Senders auf dem Ochsenkopf geöffnet, Führungen durch die Sendeanlagen des Bayrischen Rundfunks sind jedoch nicht vorgesehen.


Die Forschungsaufgaben des Instituts

Kohlenstoff, Sauerstoff, Wasserstoff und Stickstoff: Die vier für das Leben wichtigen Elemente werden auf der Erde ständig durch biologische, chemische und physikalische Prozesse umgesetzt. Die Erforschung dieser biogeochemischen Vorgänge ist eine der drängendsten Herausforderungen unserer Zeit, denn der Mensch verändert mit technischen Maßnahmen von globaler Tragweite und mit großer Geschwindigkeit solche natürlichen Kreisläufe, ohne dass die Folgen seines Handelns bislang abschätzbar sind. Die Eingriffe des Menschen betreffen dabei nicht nur die klimarelevanten Spurengase in der Atmosphäre, sondern auch die Landnutzung und die biologische Vielfalt der Organismen.

Durch die Verbrennung fossiler Energieträger, durch industrielle Produktion, intensive Landwirtschaft und den Verkehr beeinflusst der Mensch das Klima nachhaltig: Viele Anzeichen weisen darauf hin, dass sich das Klima der Erde ändert und dabei die globale Temperatur ansteigt. Mit großer Wahrscheinlichkeit lässt sich die Erwärmung auf die beobachtete Zunahme der Treibhausgase in der Atmosphäre zurückführen - man spricht vom Treibhauseffekt. Das Kohlendioxid (CO2) spielt dabei eine besondere Rolle. Im Gegensatz zu anderen Treibhausgasen, z.B. Methan (CH4) oder Kohlenmonoxid (CO), wird es in der Atmosphäre nicht abgebaut. Die Ozeane nehmen zwar einen Teil der vom Menschen verursachten CO2-Emissionen auf, dieser Prozess ist jedoch sehr langsam. Auch die Landvegetation kann Kohlenstoff speichern - welche Faktoren diese "Senken"-Funktion beeinflussen, wird am Max-Planck-Institut für Biogeochemie untersucht. Selbst wenn die Verbrennung von fossilen Energieträgern wie Öl, Kohle und Gas schon heute aufhören sollte, würden noch Jahrhunderte vergehen, bevor die Kohlendioxid-Konzentration wieder den vor-industriellen Stand annähernd erreichen könnte.

Was aber geschieht genau mit dem freigesetzten CO2? Wie reagieren Ökosysteme auf veränderte Klimabedingungen? Wie wird sich das System Erde entwickeln? Um diese Fragen zu beantworten, untersuchen die Wissenschaftler des Max-Planck-Instituts für Biogeochemie in Jena den natürlichen Kohlenstoffkreislauf.

Um dem Weg des Kohlenstoffs auf die Spur zu kommen, bauen die Max-Planck-Wissenschaftler ein Netz an kontinentalen Messstationen auf, das von Europa bis Sibirien reicht. Damit sollen wichtige Prozesse der Kohlenstoffumsetzungen zwischen der Biosphäre, also der Landvegetation und der Atmosphäre auf allen Ebenen lückenlos verfolgt werden: von Einzelbäumen und Waldbeständen über lokale Regionen bis hin zu Großlandschaften. Folgende Techniken kommen dabei zum Einsatz:

In den unteren Bereichen der Lufthülle bis etwa 3000 Meter erfassen Messflüge in Form von "Schnappschüssen" vertikale und horizontale Profile der Kohlendioxidkonzentrationen. Von 40 bis 45 Meter hohen Türmen aus werden kontinuierliche Messungen durchgeführt, die lokal den direkten Austausch von Wasserdampf, Energie und CO2 zwischen der Vegetation und der Atmosphäre registrieren. Regelmäßige Freilanduntersuchungen des Kohlenstoffumsatzes im Boden bringen zusätzlich Aufschlüsse über wichtige biologische Prozesse bei der Zersetzung von organischer Substanz, dem bislang am wenigsten verstandenen Teil des Kohlenstoffkreislaufs. Proben von Böden, Streu, Blättern oder Holz werden für Laboranalysen gesammelt, um Abbauprozesse zu verfolgen. Auf der Basis dieser Messdaten werden Computermodelle entwickelt - gekoppelte Vegetations-Atmosphären-Modelle, welche die Informationen auf den verschiedenen Ebenen zusammenfassen. In Zukunft sollen auch Fernerkundungen von erdumkreisenden Satelliten aus Daten von der Verteilung des Kohlendioxids in der Atmosphäre liefern - Projekte dazu sind in Vorbereitung. Ziel all dieser Versuche und Messungen ist, eine Kohlenstoffbilanz für Europa zu erhalten.

Die Messstation auf dem Ochsenkopf

Eine neuartige Technik nutzt für Messungen 150 bis 600 Meter hohe Türme. In dem Fernsehsender des Bayerischen Rundfunks auf dem Ochsenkopf im Fichtelgebirge hat das Max-Planck-Institut für Biogeochemie während der vergangenen zwei Jahre den Prototyp einer Messstation zur Erfassung von Austauschflüssen klimarelevanter Treibhausgase eingerichtet. Sie schließt die bestehende Skalierungslücke zwischen den Daten von lokalen Türmen und Messflügen: Mit der Station auf dem Ochsenkopf werden atmosphärische Transportprozesse über größere Gebieten, nämlich über bis zu einem Drittel der Fläche Deutschlands, erfasst. Im Vergleich dazu kann man mit 40 Meter hohen Messtürmen nur Aussagen über lokale Prozesse im Umkreis von wenigen Kilometern erhalten.

Am Sendemast auf dem Ochsenkopf sind in unterschiedlichen Höhen, auf 23, 90 und 163 Meter über Grund, Plattformen montiert: Von hier aus pumpen die Forscher des Max-Planck-Instituts über Verbindungsschläuche ständig Außenluft in das in einem Messcontainer am Boden aufgebaute Labor. Die Luft wird dann mit Hilfe unterschiedlichster Messgeräte, zum Beispiel Gaschromatographen oder C02-Analysatoren, auf ihre Bestandteile untersucht. Die Analysen erfassen neben Kohlendioxid auch die Spurengase Methan, Lachgas, Kohlenmonoxid und Schwefelhexafluorid. Die Probensammlungen und Messungen erfolgen automatisch, die Station wird von Jena aus fernüberwacht gesteuert. Zusätzlich werden in dieser Station regelmäßig eigens konstruierte Gasflaschen mit Luft gefüllt und ins Labor nach Jena zur Bestimmung der Zusammensetzung und Konzentration der Kohlenstoffisotope gebracht. Mit diesem Verfahren kann man Prozesse unterscheiden, bei denen Kohlendioxid entweder entsteht (Quellen) oder aufgenommen wird (so genannte CO2-Senken). Die Auswertung der Daten geschieht dann mit Hilfe atmosphärischer Transport- und Prozessmodelle. Das erlaubt quantitative Rückschlüsse über Austauschflüsse und die dabei wirksamen Vorgänge.

Die Messstation auf dem Ochsenkopf, die zunächst fünf Jahre lang arbeiten soll, kann das Geschehen über stark industrialisiertem und landwirtschaftlich intensiv genutztem Gebiet erfassen. Zudem werden hier neue Geräte und Messverfahren erprobt: Der "Ochsenkopf-Luftschnüffler" dient als Teststation für einen 250 Meter hohen Messturm, der - finanziert durch die Max-Planck-Gesellschaft - innerhalb der nächsten zwei Jahre in der Sibirischen Taiga gebaut werden soll. Die sibirische Landschaft besteht aus riesigen Waldflächen und Sümpfen, die zum Teil von Dauerfrostböden durchzogen sind. Hier machen sich die Folgen der globalen Erwärmung, die in den Ökosystemen zu erwarten bzw. bereits im Gang sind, besonders ausgeprägt bemerkbar - was für die Wissenschaft vor allem interessant ist, weil dann großräumige Veränderungen über einen langen Zeitraum verfolgt werden können.

Weitere Informationen erhalten Sie von:

Dr. Manuel Gloor, Projektleiter
Max-Planck-Institut für Biogeochemie
Winzerlaer Str. 10, 07745 Jena
Tel.: 03641 - 57-6373
Fax: 03641 - 57-7300
E-Mail: manuel.gloor@bgc-jena.mpg.de

Dr. Manuel Gloor | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.bgc-jena.mpg.de

Weitere Berichte zu: Fichtelgebirge Kohlendioxid Messstation Prozess Treibhausgas

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Wasserqualität von Flüssen: Zusätzliche Reinigungsstufen in Kläranlagen lohnen sich
24.05.2017 | Eberhard Karls Universität Tübingen

nachricht Eisenmangel hemmt marine Mikroorganismen
19.05.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften