Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei Galaxien auf einen Streich

03.12.2013
Ein internationales Forscherteam unter Beteiligung von Marita Krause und Rainer Beck vom Max-Planck-Institut für Radioastronomie hat eine neue Methode zur Untersuchung der Magnetfelder von Galaxien im Universum angewandt.

Beim Studium von ausgedehnten Gashüllen im Umfeld von naheen Galaxien fanden sie über detaillierte Messungen der Radiostrahlung heraus, dass eines der Objekte nicht aus einer Galaxie allein besteht.


UGC 10288 ist eine von der Seite aus gesehene Spiralgalaxie. Die in früheren Beobachtungen ermittelte Radiostrahlung wurde nur dieser Galaxie allein zugeschrieben. Jetzt haben neue, sehr detaillierte Messungen der Radiostrahlung mit dem „Karl G. Jansky Very Large Array“ (VLA) gezeigt, dass die ausgedehnte Radiostrahlung senkrecht zur Ebene der Galaxie tatsächlich von einer Hintergrundgalaxie in wesentlich größerer Entfernung herrührt, einer aktiven Galaxie mit Radiojets (im Bild in Cyan dargestellt). Das Vordergrundbild von UGC 10288 setzt sich aus Daten von optischen, Infrarot- und Radioteleskopen zusammen. Die Radiodaten erscheinen in Blau, die Infrarotdaten vom Spitzer-Teleskop der NASA in Gelb und die Daten des „Wide-field Infrared Survey Explorer“ (WISE) in Orange. Dazu kommen optische Daten vom „Sloan Digital Sky Survey”(SDSS) in Purpur (Sternlicht) und vom „Kitt Peak National Observatory“ in Rosa (heißes Gas).

© Jayanne English (University of Manitoba, Kanada), Judith Irwin (Queen's University, Kanada), Richard Rand, University of New Mexico, Albuquerque, und Mitarbeiter im CHANG-ES Konsortium, NRAO VLA, NASA/JPL-Caltech WISE & Spitzer, NOAO, and SDSS.


Separates Bild der Vordergrund-Spiralgalaxie UGC 10288, zusammengesetzt aus Ferninfrarot-Daten der NASA-Satelliten WISE (in Orange) und Spitzer (in Gelb), aus optischen Beobachtungen von ionisiertem Wasserstoff mit dem 0,9m-Teleskop des Kitt-Peak-Observatoriums (in Rosa)und vom „Sloan Digital Sky Survey“ (in Purpur), sowie Radiobeobachtungen mit dem VLA (in Cyan).

© Wie Abb. 1

Es sind vielmehr zwei Galaxien in sehr unterschiedlicher Entfernung, die zufällig hintereinander stehen und bisher nicht voneinander unterschieden werden konnten. Eine solche Konstellation zeigt Details von der näheren Galaxie, die ansonsten nicht erfasst werden könnten.

Im Rahmen einer Untersuchung von 35 Galaxien wurde auch UGC 10288 beobachtet, eine von der Seite aus gesehene Spiralgalaxie in gut 100 Millionen Lichtjahren Entfernung. Dabei ergaben Messungen mit dem amerikanischen VLA-Radioteleskop in verschiedenen Konfigurationen die besten Radiokarten, die bisher von dieser Galaxie gemacht werden konnten. Die detaillierten Radiobilder zeigen eine weitere Galaxie in wesentlich größerer Entfernung, die starke Radiostrahlung aussendet und entlang der Sichtlinie fast genau hinter UGC 10288 liegt.

In früheren Radiobildern konnten beide Galaxien nicht voneinander unterschieden werden und verschmolzen zu einem Objekt. Das ist ein spektakuläres Zusammentreffen einer Vordergrundgalaxie mit einer aktiven Radiogalaxie mit ausgedehnten Jets im Hintergrund. Die Hintergrundgalaxie steht dabei in einer wesentlich größeren Entfernung von nahezu 7 Milliarden Lichtjahren.

„Das hat unser Bild von dieser Galaxie geändert, und zwar im wörtlichen Sinn”, sagt Judith Irwin von der Queen's University in Ontario, Kanada. „Es hat unser Verständnis der charakteristischen Eigenschaften von UGC 10288 verbessert und uns ein zusätzliches Werkzeug an die Hand gegeben, um mehr über diese Galaxie zu erfahren. “

Diese verbesserten Bilder zeigen, dass UGC 10288 neue Sterne in wesentlich geringerem Ausmaß entstehen lässt als vorher angenommen, weil der überwiegende Teil der Radiostrahlung tatsächlich von der Hintergrundgalaxie stammt. Als Ergebnis einer extrem niedrigen Sternentstehungsrate bildet das Gas in den äußeren Bereichen von UGC 10288 hoch über der Spiralscheibe keine zusammenhängende Hülle.

Die Hintergrundgalaxie und speziell die Tatsache, dass ihre Radiojets ziemlich genau senkrecht zur Scheibe von UGC 10288 angeordnet sind, ermöglichen eine clevere Methode zur Untersuchung der nähergelegenen Galaxie. „Wir können die Radiostrahlung der Hintergrundgalaxie, die uns durch die Vordergrundgalaxie hindurch erreicht, dazu benutzen, sonst nicht beobachtbare Eigenschaften der Vordergrundgalaxie zu bestimmen“, sagt Jayanne English von der Universität Manitoba in Kanada.

„Die Anwendung der weiter entfernten Galaxie als Hintergrundbeleuchtung ermöglicht uns die Bestimmung des Magnetfelds in unterschiedlichen Bereichen dieser Galaxie”, erläutert Marita Krause vom Max-Planck-Institut für Radioastronomie in Bonn. „Durch die vertikale Ausrichtung der aktiven Radiogalaxie im Hintergrund können wir das Magnetfeld von UGC 10288 von der Ebene aus bis in hoch darüber gelegene Regionen bestimmen.“

Die Forscher haben dabei das Magnetfeld mit Hilfe der Faraday-Rotation gemessen, bei der die Polarisationsebene der Radiostrahlung von der Hintergrundgalaxie durch das Magnetfeld der Vordergrundgalaxie gedreht wird.

„Ironischerweise war es sogar so, dass die Radiohelligkeit von UGC 10288 alleine gar nicht ausgereicht hätte, sie in unsere Liste von 35 Galaxien aufzunehmen. Erst die zusätzliche Radiostrahlung der Hintergrundgalaxie machte sie dafür hell genug“, schließt Rainer Beck, ebenfalls vom Max-Planck-Institut für Radioastronomie. “Und damit hätten wir beinahe eine exzellente Gelegenheit für eine Magnetfeldbestimmung verpasst.”

Marita Krause und Rainer Beck vom Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn sind Ko-Autoren der Studie. Sie erfolgt im Rahmen eines internationalen Konsortiums von Forschern aus Nordamerika, Europa und Indien, dem „Continuum Halos in Nearby Galaxies - an EVLA Survey“ (CHANG-ES) Konsortium unter der Leitung von Judith Irwin (Queen’s University, Kingston, Ontario, Kanada). Die Forscher haben ihre Resultate in der Dezember-Ausgabe der Fachzeitschrift „Astronomical Journal“ veröffentlicht.

Das „National Radio Astronomy Observatory” (NRAO) ist eine Einrichtung der amerikanischen „National Science Foundation” (NSF) und wird von der „Associated Universities, Inc.” betrieben.

Originalveröffentlichung:

CHANG-ES III: UGC10288 – An Edge-on Galaxy with a Background Double-lobed Radio Source, Judith Irwin, Marita Krause, Jayanne English, Rainer Beck, Eric Murphy, Theresa
Wiegert, George Heald, Rene Walterbos, Richard J. Rand, and Troy Porter, 2013, Astronomical Journal 146, 164 (eprint arXiv:1311.3894).

http://iopscience.iop.org/1538-3881/146/6/164/metrics

Kontakt:

Dr. Marita Krause
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-312
E-mail: mkrause@mpifr-bonn.mpg.de
Dr. Rainer Beck,
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-323
E-mail: rbeck@mpifr-bonn.mpg.de
Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpifr-bonn.mpg.de/pressemeldungen/2013/12

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics