Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftlern aus Kaiserslautern, Oakland und Oxford gelingt Zeitumkehr in der Magnetismusforschung

15.12.2010
Ein Sprung nach vorn bei der Umkehr der Zeit

Wissenschaftlern um Prof. Burkard Hillebrands von der TU Kaiserslautern ist es mit Kolleginnen und Kollegen von der Oakland University (U.S.A.) und der University of Oxford (Großbritannien) gelungen, ein neues Verfahren zur Zeitumkehr magnetischer Wellen und Signale zu entwickeln.


Umkehr der Zeit: ein Eingangssignal (grün) wird von einer Antenne ausgesendet und breitet sich durch einen dynamischen künstlichen Kristall aus. Durch schnelle Veränderung der Kristalleigenschaften mittels eines Kontrollpulses (orange), kann eine zeitumgekehrte Version des Eingangssignals (rot) erzeugt werden.

Im digitalen Zeitalter ist das "Rückwärts abspielen" ein alltäglicher Vorgang: will man beispielsweise ein Musikstück rückwärts abspielen, überspielt man das Stück einfach auf einen Computer und die Software erledigt den Rest. Aber nicht nur akustische und visuelle Signale, sondern jede Art von digitaler Information können, wenn sie einmal aufgenommen wurden, genauso einfach rückwärts wie vorwärts abgespielt werden.

Aber angenommen, dass dabei die Geschwindigkeit entscheidend wäre. Ist es möglich, ein Signal rückwärts zu spielen ohne es vorher aufzunehmen, zu verarbeiten und wieder abzuspielen? Diese Art der Zeitumkehr hätte große Auswirkungen auf die Verfahren der Signalverarbeitung, etwa in Kommunikationsnetzwerken. Bisher hatten alle Lösungsansätze gravierende Probleme in der Praxis: entweder waren sie auf sehr einfache Signale beschränkt oder hatten wegen der zugrundeliegenden physikalischen Prozesse einen sehr hohen Energieverbrauch.

Das Physiker-Team von der TU Kaiserslautern, der Oakland University (U.S.A.) und der University of Oxford (Großbritannien) hat einen neuartigen Mechanismus der Zeitumkehr auf Basis von künstlichen Kristallen entwickelt.

Natürliche Kristalle haben eine feste Atomstruktur. Dieses sogenannte Kristallgitter verleiht ihnen besondere Eigenschaften: dem Diamanten sein Funkeln oder dem Graphit seine Schreibfähigkeit. Etwa so wie das Webmuster eines Stoffes. Ein künstlicher Kristall hat ein von Ingenieuren entwickeltes Kristallgitter, dessen Eigenschaften von den verwendeten Materialien abhängen. Sie sind interessant, weil Signale (z.B. Licht, Mikrowellen oder Schallwellen), die durch diese künstlichen Kristalle geleitet werden, auf überraschende Weise verändert werden können.

Der von Hillebrands und seinen Kolleginnen und Kollegen entwickelte Mechanismus der Zeitumkehr beruht auf einem bestimmten Typ dynamischer künstlicher Kristalle. Das heißt, dass das Kristallgitter zeitabhängig verändert werden kann – quasi ein auf Knopfdruck verändertes Webmuster. Die Forscher konnten zeigen, dass man eine zeitumgekehrte Version des Signals erzeugen kann, indem man den Schalter umlegt, während sich das Signal durch den künstlichen Kristall bewegt.

Die Wissenschaftler haben den Zeitumkehr-Effekt an magnetischen Wellen, sogenannten Spinwellen gezeigt. Sie nutzten dazu die magnetischen Eigenschaften eines dynamischen künstlichen Kristalls aus. Der Effekt ist jedoch universell, und kann auf jegliche Wellen oder Signale übertragen werden. Die Ergebnisse haben nicht nur vielversprechende Auswirkungen auf die zukünftige Signal- und Datenverarbeitung, sondern ermöglichen auch aufregende Einblicke in die physikalischen Grundlagen von Signalen und Wellen. Die Ergebnisse (All-linear time reversal by a dynamic artificial crystal) wurden kürzlich von Andrii V. Chumak, Vasil S. Tiberkevich, Alexy D. Karenowska, Alexander A. Serga, John F. Gregg, Andrei N. Slavin und Burkard Hillebrands in der hochangesehenen Fachzeitschrift Nature Communications online veröffentlicht.

Zu finden unter: http://www.nature.com/ncomms/journal/v1/n9/full/ncomms1142.html oder http://tinyurl.com/2fbx6ts

Professor Hillebrands ist Mitglied des Landesforschungszentrums OPTIMAS und des Fachbereichs Physik der TU Kaiserslautern. Er ist in die Koordination einer Reihe nationaler und internationaler Forschungsverbünde eingebunden, darunter der SFB/TRR 49 "Condensed Matter Systems with Variable Many-Body Interactions", die Graduiertenschule der Exzellenz "Material Sciences in Mainz (MAINZ)" und der deutsch-japanischen Forschergruppe ASPIMATT.

Für weitere Informationen steht Prof. Dr. Burkard Hillebrands (hilleb@physik.uni-kl.de, Tel. ++49 (0)631/205-4228 / -2202) zur Verfügung.

Thomas Jung | idw
Weitere Informationen:
http://www.uni-kl.de
http://tinyurl.com/2fbx6ts
http://www.nature.com/ncomms/journal/v1/n9/full/ncomms1142.html

Weitere Berichte zu: Kristall Kristallgitter Magnetismusforschung Webmuster Welle Zeitumkehr

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Durchbruch mit einer Kette aus Goldatomen
17.02.2017 | Universität Konstanz

nachricht Zukunftsmusik: Neues Funktionsprinzip zur Erzeugung der „Dritten Harmonischen“
17.02.2017 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung