Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftlern aus Kaiserslautern, Oakland und Oxford gelingt Zeitumkehr in der Magnetismusforschung

15.12.2010
Ein Sprung nach vorn bei der Umkehr der Zeit

Wissenschaftlern um Prof. Burkard Hillebrands von der TU Kaiserslautern ist es mit Kolleginnen und Kollegen von der Oakland University (U.S.A.) und der University of Oxford (Großbritannien) gelungen, ein neues Verfahren zur Zeitumkehr magnetischer Wellen und Signale zu entwickeln.


Umkehr der Zeit: ein Eingangssignal (grün) wird von einer Antenne ausgesendet und breitet sich durch einen dynamischen künstlichen Kristall aus. Durch schnelle Veränderung der Kristalleigenschaften mittels eines Kontrollpulses (orange), kann eine zeitumgekehrte Version des Eingangssignals (rot) erzeugt werden.

Im digitalen Zeitalter ist das "Rückwärts abspielen" ein alltäglicher Vorgang: will man beispielsweise ein Musikstück rückwärts abspielen, überspielt man das Stück einfach auf einen Computer und die Software erledigt den Rest. Aber nicht nur akustische und visuelle Signale, sondern jede Art von digitaler Information können, wenn sie einmal aufgenommen wurden, genauso einfach rückwärts wie vorwärts abgespielt werden.

Aber angenommen, dass dabei die Geschwindigkeit entscheidend wäre. Ist es möglich, ein Signal rückwärts zu spielen ohne es vorher aufzunehmen, zu verarbeiten und wieder abzuspielen? Diese Art der Zeitumkehr hätte große Auswirkungen auf die Verfahren der Signalverarbeitung, etwa in Kommunikationsnetzwerken. Bisher hatten alle Lösungsansätze gravierende Probleme in der Praxis: entweder waren sie auf sehr einfache Signale beschränkt oder hatten wegen der zugrundeliegenden physikalischen Prozesse einen sehr hohen Energieverbrauch.

Das Physiker-Team von der TU Kaiserslautern, der Oakland University (U.S.A.) und der University of Oxford (Großbritannien) hat einen neuartigen Mechanismus der Zeitumkehr auf Basis von künstlichen Kristallen entwickelt.

Natürliche Kristalle haben eine feste Atomstruktur. Dieses sogenannte Kristallgitter verleiht ihnen besondere Eigenschaften: dem Diamanten sein Funkeln oder dem Graphit seine Schreibfähigkeit. Etwa so wie das Webmuster eines Stoffes. Ein künstlicher Kristall hat ein von Ingenieuren entwickeltes Kristallgitter, dessen Eigenschaften von den verwendeten Materialien abhängen. Sie sind interessant, weil Signale (z.B. Licht, Mikrowellen oder Schallwellen), die durch diese künstlichen Kristalle geleitet werden, auf überraschende Weise verändert werden können.

Der von Hillebrands und seinen Kolleginnen und Kollegen entwickelte Mechanismus der Zeitumkehr beruht auf einem bestimmten Typ dynamischer künstlicher Kristalle. Das heißt, dass das Kristallgitter zeitabhängig verändert werden kann – quasi ein auf Knopfdruck verändertes Webmuster. Die Forscher konnten zeigen, dass man eine zeitumgekehrte Version des Signals erzeugen kann, indem man den Schalter umlegt, während sich das Signal durch den künstlichen Kristall bewegt.

Die Wissenschaftler haben den Zeitumkehr-Effekt an magnetischen Wellen, sogenannten Spinwellen gezeigt. Sie nutzten dazu die magnetischen Eigenschaften eines dynamischen künstlichen Kristalls aus. Der Effekt ist jedoch universell, und kann auf jegliche Wellen oder Signale übertragen werden. Die Ergebnisse haben nicht nur vielversprechende Auswirkungen auf die zukünftige Signal- und Datenverarbeitung, sondern ermöglichen auch aufregende Einblicke in die physikalischen Grundlagen von Signalen und Wellen. Die Ergebnisse (All-linear time reversal by a dynamic artificial crystal) wurden kürzlich von Andrii V. Chumak, Vasil S. Tiberkevich, Alexy D. Karenowska, Alexander A. Serga, John F. Gregg, Andrei N. Slavin und Burkard Hillebrands in der hochangesehenen Fachzeitschrift Nature Communications online veröffentlicht.

Zu finden unter: http://www.nature.com/ncomms/journal/v1/n9/full/ncomms1142.html oder http://tinyurl.com/2fbx6ts

Professor Hillebrands ist Mitglied des Landesforschungszentrums OPTIMAS und des Fachbereichs Physik der TU Kaiserslautern. Er ist in die Koordination einer Reihe nationaler und internationaler Forschungsverbünde eingebunden, darunter der SFB/TRR 49 "Condensed Matter Systems with Variable Many-Body Interactions", die Graduiertenschule der Exzellenz "Material Sciences in Mainz (MAINZ)" und der deutsch-japanischen Forschergruppe ASPIMATT.

Für weitere Informationen steht Prof. Dr. Burkard Hillebrands (hilleb@physik.uni-kl.de, Tel. ++49 (0)631/205-4228 / -2202) zur Verfügung.

Thomas Jung | idw
Weitere Informationen:
http://www.uni-kl.de
http://tinyurl.com/2fbx6ts
http://www.nature.com/ncomms/journal/v1/n9/full/ncomms1142.html

Weitere Berichte zu: Kristall Kristallgitter Magnetismusforschung Webmuster Welle Zeitumkehr

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie