Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weg frei für die kostengünstige Herstellung flexibler OLEDs

14.04.2010
Der Traum einer preiswerten, energiesparenden Beleuchtung im großen Maßstab ist Dank den von Fraunhofer Forschern entwickelten Barriereschichtsystemen für flexible OLEDs ein Stück näher gerückt

Die organische Leuchtdiode (OLED) gilt als ein Leuchtmittel der Zukunft, das die heute üblichen Glühlampen mit ablösen könnte. Sie wandelt Elektrizität ohne große Energieverluste in flächiges Licht hoher Qualität um. Bisher sind die auf dem Markt befindlichen OLEDs allerdings noch recht preisintensiv und werden ausschließlich auf starren Materialien, wie Glas, hergestellt.

Die Entwicklung von flexiblen organischen Leuchtdioden, die in industriellen Anlagen in großem Maßstab produziert werden können, verspricht hier große Kostenersparnis und somit eine breite Vermarktung der umweltfreundlichen und hocheffizienten Leuchtmittel.

Den Wissenschaftlern zweier Dresdener Fraunhofer-Institute ist es gelungen flexible, großflächige, organische Leuchtdioden mit den für eine lange Lebensdauer notwendigen Barriereschichten herzustellen. Das Fraunhofer-Institut für Photonische Mikrosysteme IPMS und das Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP haben zusammen in dem vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekt ROLLEX (Rolle-zu-Rolle-Fertigung hocheffizienter Leuchtdioden auf flexiblen Substraten, FKZ 13N8858 und 13N8857) erstmals eine flexible OLED mit einer Dünnschichtverkapselung in einer Rolle-zu-Rolle-Beschichtungsanlage hergestellt.

Prof. Karl Leo, Institutsleiter des Fraunhofer IPMS, bestätigt: "Die erfolgreiche Herstellung einer OLED im Vakuum-Rolle-zu-Rolle Verfahren ist ein Durchbruch auf dem Weg zu hocheffizienten und preisgünstigen Bauelementen. Der Erfolg dieses Projektes hat die Leistungsfähigkeit des Dresdener Organik-Standortes erneut unter Beweis gestellt."

Eine überaus wichtige Komponente flexibler OLEDs ist die homogene Verkapselung der leuchtenden OLED-Schichten mit transparenten Barriereschichten. Das Eindringen kleinster Mengen Feuchtigkeit oder Sauerstoff verkürzt die Lebensdauer einer OLED stark, sodass die Leuchtmaterialien durch Barriereschichten möglichst großflächig und ohne Defekte geschützt werden müssen. Andererseits müssen die Barriereschichten das ausstrahlende Licht passieren lassen und dürfen dessen Farbe nur minimal beeinträchtigen.

In ihrer Pilotanlage konnten die Forschergruppen erstmals OLED-Materialien auf eine preisgünstige Aluminiumfolie aufbringen und mit dem vom Fraunhofer FEP patentierten Schichtsystem verkapseln, ohne die Leuchtfähigkeit der Folie zu beeinträchtigen. Dr. Christian May, Leiter des Geschäftsfeldes "Organische Materialien und Systeme" am Fraunhofer IPMS, ist erfreut über den Projekterfolg: "Bei der Entwicklung der flexiblen OLED konnten Erfahrungen beider Institute optimal zusammengebracht werden. Ich bin begeistert, dass wir die vom Fraunhofer FEP entwickelten wirksamen Barriereschichtsysteme in die OLED-Technologie des Fraunhofer IPMS integrieren konnten." Dr. Nicolas Schiller, Leiter des Geschäftsfeldes "Beschichtung von flexiblen Produkten" am Fraunhofer FEP, ergänzt: "Die Beschichtungsprozesse erfolgen alle im Rolle-zu-Rolle-Modus mit einem kontinuierlich bewegtem Substrat und weisen daher ein erhebliches Kostensenkungspotenzial auf."

Die von den zwei Fraunhofer-Instituten entwickelte Technologie stellt einen Meilenstein für den weiteren Weg zur industriellen Herstellung von flexiblen OLEDs dar. Neben OLEDs können auch weitere Bauteile, wie z. B. organische Solarzellen oder Speichersysteme, mittelfristig realisiert werden.

Die Arbeiten sollen von den Dresdener Instituten in einem größeren Konsortium fortgesetzt werden.

Weitere Informationen zu den erzielten Ergebnissen finden Sie unter http://www.rollex-projekt.de und http://www.ipms.fraunhofer.de/de/comedd sowie Informationen zum Fraunhofer IPMS und Fraunhofer FEP unter http://www.ipms.fraunhofer.de/ bzw. http://www.fep.fraunhofer.de/.

Wissenschaftlicher Kontakt:

Dr. Nicolas Schiller, Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP Dresden, Telefon 0351 2586-131 nicolas.schiller@fep.fraunhofer.de

Pressekontakt:

Ines Schedwill, Fraunhofer-Institut für Photonische Mikrosysteme IPMS Dresden, Telefon 0351 8823-238, ines.schedwill@ipms.fraunhofer.de

Annett Arnold, Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP Dresden, Telefon 0351 2586-452, annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer
Weitere Informationen:
http://www.ipms.fraunhofer.de/de/comedd
http://www.ipms.fraunhofer.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie