Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Wasserstoff-Blei-Kollisionen mit dem Urknall zu tun haben

08.10.2013
Messungen des LHCb-Detektors am CERN liefern wichtige Daten zum Verständnis des Materiezustands am Beginn unseres Universums.

Wissenschaftler der LHCb-Kollaboration haben erstmals energiereiche Kollisionen von Wasserstoff- und Bleikernen untersucht und die Produktion einer bestimmten Sorte kurzlebiger Teilchen detailliert gemessen.


Eine Proton-Blei-Kollision, beobachtet mit dem LHCb-Detektor während der Messphase.
Grafik: LHCb-Kollaboration

Die Ergebnisse sind ein entscheidendes Puzzleteil zum Verständnis der extrem heißen Materie unmittelbar nach dem Urknall.

Die Bausteine von Atomkernen – Protonen und Neutronen – bestehen aus Quarks. Von diesen fundamentalen Teilchen kennen die Physiker 6 verschiedene Arten und dazu die entsprechenden Antiteilchen. Quarks treten nicht isoliert, sondern nur in zusammengesetzten Teilchen auf, in denen sie von Gluonen (Austauschteilchen der starken Kernkraft) zusammengehalten werden. Proton und Neutron, zum Beispiel, bestehen aus jeweils 3 Quarks.

Unmittelbar nach dem Urknall waren Quarks und Gluonen noch nicht in Elementarteilchen gebunden. Stattdessen bildete die extrem heiße Materie einen unstrukturierten „Brei“, ein sogenanntes Quark-Gluon-Plasma. Auch in sehr energiereichen „Frontalzusammenstößen“ von Kernen schwerer Elemente wie z.B. Blei kann für extrem kurze Zeitspannen ein Quark-Gluon-Plasma von Atomkerngröße entstehen, bevor tausende, meist kurzlebige Teilchen von der „Unfallstelle“ davon fliegen. Nachweisen lässt sich ein Quark-Gluon-Plasma nur indirekt, z.B. dadurch, dass die Bildung bestimmter Teilchen in der Reaktion relativ unterdrückt ist. Allerdings kann auch normale „kalte“ Kernmaterie solche Effekte bewirken.

Es ist also erforderlich, beide Effekte aufzudröseln, wenn man das Quark-Gluon-Plasma verstehen und damit mehr über den Urknall lernen will. Bei Kollisionen von Protonen mit schweren Kernen oder von Protonen untereinander kann kein Quark-Gluon-Plasma entstehen, während die Effekte der kalten Kernmaterie auftreten. Deshalb hat die an der LHCb-Kollaboration beteiligte Gruppe von Michael Schmelling vom MPI für Kernphysik sich maßgeblich für ein Experiment engagiert, das gleichzeitig ein neues Einsatzgebiet für den LHCb-Detektor darstellt: Kollisionen von Blei-Kernen mit Protonen (Wasserstoffkernen). Ein erstes Resultat ist die Messung der Produktion einer bestimmten Sorte schwerer Teilchen, sogenannter J/ψ Mesonen. In Blei-Blei-Stößen dagegen entstehen so extrem viele Teilchen, dass LHCb aufgrund seiner Konstruktion quasi geblendet und möglicherweise sogar beschädigt würde.

Der LHCb-Detektor, ca. 20 m lang und 10 m hoch, ist der kleinste der vier großen Teilchendetektoren am Large Hadron Collider (LHC) des CERN. Seine Spezialität ist es, nahe am Kollisionspunkt und im spitzen Winkel zur Flugrichtung der Projektile die im Stoß erzeugten Teilchen zu registrieren. Mit seinen verschiedenen Komponenten kann er sowohl die Teilchen identifizieren als auch ihren Ursprungspunkt genau lokalisieren. Für das Experiment wurden Anfang des Jahres etwa 3 Wochen lang im LHC Protonen und Bleikerne mit entgegengesetzter Flugrichtung auf eine Energie von mehreren TeV pro Nukleon (ein Tera-Elektronenvolt ist die Energie, die ein Proton erhält, wenn es eine Spannung von einer Billion Volt durchfallen hat) beschleunigt und zur Kollision gebracht. Das ist ungefähr so, als würden ein Tischtennis- und ein Basketball frontal aufeinander geschossen. Um diese unsymmetrischen Kollisionen sozusagen von der Tischtennisball- und der Basketballseite aus untersuchen zu können, wurde nach 2 Wochen die Flugrichtung der beiden Strahlen umgekehrt.

In den Stößen werden J/ψ-Mesonen sowohl direkt, als auch über den Zerfall noch schwererer Teilchen gebildet, die erst einige Millimeter weit fliegen ehe sie zerfallen. LHCb kann diese beiden Beiträge unterscheiden. Die J/ψ-Mesonen selbst verraten sich anhand eines charakteristischen Zerfallsmusters. Wie erwartet unterscheidet sich ihre Produktion auf den beiden Reaktionswegen und hängt auch von der Beobachtungsrichtung ab. Die Messergebisse sind konsistent mit den leider noch recht unsicheren theoretischen Vorhersagen und in guter Übereinstimmung mit den parallel durchgeführten Messungen mit dem ALICE-Detektor am LHC. ALICE kann allerdings bloß die Summe von direkten und indirekten Beiträgen messen.

„Zusammen mit den früheren Messungen aus Proton-Proton-Stößen schaffen die Proton-Blei-Resultate damit die Voraussetzung, die Eigenschaften des Quark-Gluon-Plasmas am LHC mit hoher Genauigkeit zu bestimmen“, resümiert Michael Schmelling.

Originalpublikation:
Study of J/ψ production and cold nuclear matter effects in pPb collisions, LHCb Collaboration

arXiv:1308.6729 [nucl-ex] http://arxiv.org/abs/1308.6729

Kontakt:

Prof. Dr. Michael Schmelling
Max-Planck-Institut für Kernphysik
Tel.: 06221 516511
E-Mail: michael.schmelling@mpi-hd.mpg.de
Weitere Informationen:
http://lhcb-public.web.cern.ch/lhcb-public/ - LHCb-Experiment

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie