Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Wasserstoff-Blei-Kollisionen mit dem Urknall zu tun haben

08.10.2013
Messungen des LHCb-Detektors am CERN liefern wichtige Daten zum Verständnis des Materiezustands am Beginn unseres Universums.

Wissenschaftler der LHCb-Kollaboration haben erstmals energiereiche Kollisionen von Wasserstoff- und Bleikernen untersucht und die Produktion einer bestimmten Sorte kurzlebiger Teilchen detailliert gemessen.


Eine Proton-Blei-Kollision, beobachtet mit dem LHCb-Detektor während der Messphase.
Grafik: LHCb-Kollaboration

Die Ergebnisse sind ein entscheidendes Puzzleteil zum Verständnis der extrem heißen Materie unmittelbar nach dem Urknall.

Die Bausteine von Atomkernen – Protonen und Neutronen – bestehen aus Quarks. Von diesen fundamentalen Teilchen kennen die Physiker 6 verschiedene Arten und dazu die entsprechenden Antiteilchen. Quarks treten nicht isoliert, sondern nur in zusammengesetzten Teilchen auf, in denen sie von Gluonen (Austauschteilchen der starken Kernkraft) zusammengehalten werden. Proton und Neutron, zum Beispiel, bestehen aus jeweils 3 Quarks.

Unmittelbar nach dem Urknall waren Quarks und Gluonen noch nicht in Elementarteilchen gebunden. Stattdessen bildete die extrem heiße Materie einen unstrukturierten „Brei“, ein sogenanntes Quark-Gluon-Plasma. Auch in sehr energiereichen „Frontalzusammenstößen“ von Kernen schwerer Elemente wie z.B. Blei kann für extrem kurze Zeitspannen ein Quark-Gluon-Plasma von Atomkerngröße entstehen, bevor tausende, meist kurzlebige Teilchen von der „Unfallstelle“ davon fliegen. Nachweisen lässt sich ein Quark-Gluon-Plasma nur indirekt, z.B. dadurch, dass die Bildung bestimmter Teilchen in der Reaktion relativ unterdrückt ist. Allerdings kann auch normale „kalte“ Kernmaterie solche Effekte bewirken.

Es ist also erforderlich, beide Effekte aufzudröseln, wenn man das Quark-Gluon-Plasma verstehen und damit mehr über den Urknall lernen will. Bei Kollisionen von Protonen mit schweren Kernen oder von Protonen untereinander kann kein Quark-Gluon-Plasma entstehen, während die Effekte der kalten Kernmaterie auftreten. Deshalb hat die an der LHCb-Kollaboration beteiligte Gruppe von Michael Schmelling vom MPI für Kernphysik sich maßgeblich für ein Experiment engagiert, das gleichzeitig ein neues Einsatzgebiet für den LHCb-Detektor darstellt: Kollisionen von Blei-Kernen mit Protonen (Wasserstoffkernen). Ein erstes Resultat ist die Messung der Produktion einer bestimmten Sorte schwerer Teilchen, sogenannter J/ψ Mesonen. In Blei-Blei-Stößen dagegen entstehen so extrem viele Teilchen, dass LHCb aufgrund seiner Konstruktion quasi geblendet und möglicherweise sogar beschädigt würde.

Der LHCb-Detektor, ca. 20 m lang und 10 m hoch, ist der kleinste der vier großen Teilchendetektoren am Large Hadron Collider (LHC) des CERN. Seine Spezialität ist es, nahe am Kollisionspunkt und im spitzen Winkel zur Flugrichtung der Projektile die im Stoß erzeugten Teilchen zu registrieren. Mit seinen verschiedenen Komponenten kann er sowohl die Teilchen identifizieren als auch ihren Ursprungspunkt genau lokalisieren. Für das Experiment wurden Anfang des Jahres etwa 3 Wochen lang im LHC Protonen und Bleikerne mit entgegengesetzter Flugrichtung auf eine Energie von mehreren TeV pro Nukleon (ein Tera-Elektronenvolt ist die Energie, die ein Proton erhält, wenn es eine Spannung von einer Billion Volt durchfallen hat) beschleunigt und zur Kollision gebracht. Das ist ungefähr so, als würden ein Tischtennis- und ein Basketball frontal aufeinander geschossen. Um diese unsymmetrischen Kollisionen sozusagen von der Tischtennisball- und der Basketballseite aus untersuchen zu können, wurde nach 2 Wochen die Flugrichtung der beiden Strahlen umgekehrt.

In den Stößen werden J/ψ-Mesonen sowohl direkt, als auch über den Zerfall noch schwererer Teilchen gebildet, die erst einige Millimeter weit fliegen ehe sie zerfallen. LHCb kann diese beiden Beiträge unterscheiden. Die J/ψ-Mesonen selbst verraten sich anhand eines charakteristischen Zerfallsmusters. Wie erwartet unterscheidet sich ihre Produktion auf den beiden Reaktionswegen und hängt auch von der Beobachtungsrichtung ab. Die Messergebisse sind konsistent mit den leider noch recht unsicheren theoretischen Vorhersagen und in guter Übereinstimmung mit den parallel durchgeführten Messungen mit dem ALICE-Detektor am LHC. ALICE kann allerdings bloß die Summe von direkten und indirekten Beiträgen messen.

„Zusammen mit den früheren Messungen aus Proton-Proton-Stößen schaffen die Proton-Blei-Resultate damit die Voraussetzung, die Eigenschaften des Quark-Gluon-Plasmas am LHC mit hoher Genauigkeit zu bestimmen“, resümiert Michael Schmelling.

Originalpublikation:
Study of J/ψ production and cold nuclear matter effects in pPb collisions, LHCb Collaboration

arXiv:1308.6729 [nucl-ex] http://arxiv.org/abs/1308.6729

Kontakt:

Prof. Dr. Michael Schmelling
Max-Planck-Institut für Kernphysik
Tel.: 06221 516511
E-Mail: michael.schmelling@mpi-hd.mpg.de
Weitere Informationen:
http://lhcb-public.web.cern.ch/lhcb-public/ - LHCb-Experiment

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode für die Datenübertragung mit Licht

29.05.2017 | Physik Astronomie

Deutschlandweit erstmalig: Selbstauflösender Bronchial-Stent für Säugling

29.05.2017 | Medizintechnik

Professionelle Mooszucht für den Klimaschutz – Projektstart in Greifswald

29.05.2017 | Ökologie Umwelt- Naturschutz