Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verzögerter Zeitpunkt Null

25.06.2010
Ein internationales Team des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik in Garching hat eine Zeitversetzung beim Herauslösen von Elektronen aus Atomen durch Lichtpulse entdeckt. Dabei wurde das bisher kürzeste Zeitintervall in der Natur gemessen (Science, 25. Juni 2010).

Trifft Licht auf Atome, werden deren Elektronen angeregt. Bei ausreichender Energiezufuhr verlassen die Teilchen das Atom. Den Effekt nennt man Photoemission, er wurde vor mehr als 100 Jahren von Albert Einstein entdeckt. Man geht davon aus, dass sofort nach dem Auftreffen des Lichtstrahls die Bewegung der Elektronen im Atom beginnt. Diesen Zeitpunkt definiert man als Nullpunkt bei der Elektronenanregung durch Licht.

Mit ihrer Ultrakurzzeit-Messtechnik haben die Physiker vom Labor für Attosekundenphysik (LAP) unter der Leitung von Prof. Ferenc Krausz am Max-Planck-Institut für Quantenoptik (MPQ) in Garching, der Ludwig-Maximilians-Universität München (LMU) und der Technischen Universität München (TUM), in Zusammenarbeit mit Kollegen aus Griechenland, Österreich, und Saudi Arabien, diese Annahme überprüft. Dazu schickten die Forscher Lichtpulse auf Neon-Edelgasatome. Es stellte sich heraus, dass die gleichzeitig durch Lichtpulse angeregten Elektronen, die sich auf unterschiedlichen Umlaufbahnen (Orbitalen) der Atome befinden, erst mit einer Zeitverzögerung von einigen zehn Attosekunden das Atom verlassen. Eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde.

Die neuen Erkenntnisse stehen damit im Gegensatz zu der bisherigen Annahme, dass die Elektronen das Atom sofort nach Auftreffen des Lichtpulses verlassen, schreiben die Wissenschaftler im Wissenschaftsjournal Science (Science, 25. Juni 2010). Das Magazin kommuniziert die neuen Erkenntnisse mit einer Titelbildgeschichte.

Anfang des letzten Jahrhunderts revolutionierte die Entdeckung des Photoelektrischen Effekts die Physik. Die Quantenmechanik war geboren. Die Anregung und Photoemission von Elektronen in Atomen durch Licht, ist heute noch immer eines der bedeutendsten Phänomene der Quantenphysik. Man nimmt an, dass das Elektron nach der Absorption eines Lichtteilchens (Photons) ohne Verzögerung freigesetzt wird.

Jetzt hat ein internationales Team vom Labor für Attosekundenphysik (LAP) jedoch festgestellt, dass Elektronen, die sich auf verschiedenen Umlaufbahnen in Neon-Edelgasatomen befinden, erst mit einer Zeitverzögerung aus dem Atom austreten. Mit dabei in der Kooperation waren Forscher des Max-Planck-Instituts für Quantenoptik (Garching), der Ludwig-Maximilians-Universität München, der Technischen Universität Wien, der Univ. Athen, und der King-Saud-Universität (Riad, Saudi-Arabien).

Bei ihren Experimenten schickten die Physiker hochenergetische Laserpulse mit der Dauer von rund vier Femtosekunden (10-15 Sekunden) im nahen Infrarot (NIR) auf die Edelgasatome. Zu dem Laserpuls synchronisierten die Forscher einen weiteren Lichtblitz, der weniger als 180 Attosekunden dauerte und dessen Wellenlänge sich im Extremen Ultraviolett (XUV) des Spektrums befindet. Mit dem Attosekunden-Lichtblitz lösten die Physiker die Elektronen aus den Orbitalen. Dabei sorgte der Lichtblitz dafür, dass entweder Elektronen aus dem äußeren 2p- oder dem näher zum Atomkern liegenden 2s-Orbital die Atome verließen. Mit dem synchronisierten Femtosekunden-Laserpuls zeichneten die Physiker dann auf, wann die rasenden Elektronen das Atom verlassen haben.

Bei den Messungen stellte sich heraus, dass trotz zeitgleicher Anregung der Elektronen, diese das Edelgasatom mit einem Zeitversatz von rund 20 Attosekunden verließen. „Eines der Elektronen verlässt das Atom früher als das andere. "Damit konnten wir zeigen, dass Elektronen nach Anregung durch Licht kurz zögern, bevor Sie das Atom verlassen", erklärt Dr. Martin Schulze, Postdoc im LAP-Team.

Herauszufinden, was dieses Zögern bewirkt, war auch eine Herausforderung an die theoretischen Physiker des LAP-Teams um Dr. Vladislav Yakovlev, und seine Kollegen von der TU Wien (Österreich) und der National Hellenic Research Foundation (Griechenland). Sie konnten mit aufwändigen Berechnungen den Effekt qualitativ bestätigen, kamen allerdings auf einen zeitlichen Versatz von nur fünf Attosekunden. Die Ursache dieser Diskrepanz dürfte in der Komplexität des Neonatoms liegen, das neben dem Kern aus zehn Elektronen besteht. "Der Rechenaufwand für das gesamte Atommodell unter Einbezug aller Wechselwirkungen zwischen allen Elektronen übersteigt die Rechenkapazität von heutigen Supercomputern", erklärt Yakovlev.

Immerhin konnten diese Untersuchungen die wahrscheinliche Ursache für das "Zögern" der Elektronen zu Tage fördern. Die Forscher gehen davon aus, dass die Elektronen nicht nur mit ihrem Atomkern interagieren, sondern sie sich ebenso untereinander beeinflussen. "Die Elektron-Elektron Wechselwirkung kann dazu führen, dass es ein Weilchen dauert, bevor das von der einfallenden Lichtwelle geschüttelte Elektron von seinen Artgenossen losgelassen wird und das Atom verlassen darf", sind sich Schultze und Yakovlev einig.

"Unsere Ergebnisse bedeuten einen weiteren wichtigen Einblick in die Wechselwirkungen von Elektronen in Atomen", erläutert Prof. Ferenc Krausz. Solche, bis heute nur unzureichend verstandenen Prozesse, haben entscheidenden Einfluss auf das Verhalten von Elektronen in den winzigsten Dimensionen. Elektronenbewegungen spielen bei allen elementaren Abläufen biologischer und chemischer Prozesse eine bedeutende Rolle. Ebenso bestimmen sie die Geschwindigkeit von Mikroprozessoren, den Herzstücken von Computern. Dafür ist die schnellste Messtechnik der Welt gerade gut genug: der beobachtete 20-Attosekunden-Versatz in der Austrittzeit der Elektronen ist das kürzeste jemals gemessene Zeitintervall in der Natur.

Text: Thorsten Naeser

Originalveröffentlichung:
M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz & V. S. Yakovlev.
"Delay in Photoemission", Science, 25. Juni 2010
DOI: 10.1126/science.1189401
Weitere Informationen:
http://www.attoworld.de Homepage LAP
http://www.munich-photonics.de Homepage des Exzellenzclusters
http://www.physik.uni-muenchen.de Fakultät für Physik der LMU
http://www.ph.tum.de/aktuelles Physikdepartment der TU München

Christine Kortenbruck | idw
Weitere Informationen:
http://www.munich-photonics.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie