Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verzögerter Zeitpunkt Null

25.06.2010
Ein internationales Team des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik in Garching hat eine Zeitversetzung beim Herauslösen von Elektronen aus Atomen durch Lichtpulse entdeckt. Dabei wurde das bisher kürzeste Zeitintervall in der Natur gemessen (Science, 25. Juni 2010).

Trifft Licht auf Atome, werden deren Elektronen angeregt. Bei ausreichender Energiezufuhr verlassen die Teilchen das Atom. Den Effekt nennt man Photoemission, er wurde vor mehr als 100 Jahren von Albert Einstein entdeckt. Man geht davon aus, dass sofort nach dem Auftreffen des Lichtstrahls die Bewegung der Elektronen im Atom beginnt. Diesen Zeitpunkt definiert man als Nullpunkt bei der Elektronenanregung durch Licht.

Mit ihrer Ultrakurzzeit-Messtechnik haben die Physiker vom Labor für Attosekundenphysik (LAP) unter der Leitung von Prof. Ferenc Krausz am Max-Planck-Institut für Quantenoptik (MPQ) in Garching, der Ludwig-Maximilians-Universität München (LMU) und der Technischen Universität München (TUM), in Zusammenarbeit mit Kollegen aus Griechenland, Österreich, und Saudi Arabien, diese Annahme überprüft. Dazu schickten die Forscher Lichtpulse auf Neon-Edelgasatome. Es stellte sich heraus, dass die gleichzeitig durch Lichtpulse angeregten Elektronen, die sich auf unterschiedlichen Umlaufbahnen (Orbitalen) der Atome befinden, erst mit einer Zeitverzögerung von einigen zehn Attosekunden das Atom verlassen. Eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde.

Die neuen Erkenntnisse stehen damit im Gegensatz zu der bisherigen Annahme, dass die Elektronen das Atom sofort nach Auftreffen des Lichtpulses verlassen, schreiben die Wissenschaftler im Wissenschaftsjournal Science (Science, 25. Juni 2010). Das Magazin kommuniziert die neuen Erkenntnisse mit einer Titelbildgeschichte.

Anfang des letzten Jahrhunderts revolutionierte die Entdeckung des Photoelektrischen Effekts die Physik. Die Quantenmechanik war geboren. Die Anregung und Photoemission von Elektronen in Atomen durch Licht, ist heute noch immer eines der bedeutendsten Phänomene der Quantenphysik. Man nimmt an, dass das Elektron nach der Absorption eines Lichtteilchens (Photons) ohne Verzögerung freigesetzt wird.

Jetzt hat ein internationales Team vom Labor für Attosekundenphysik (LAP) jedoch festgestellt, dass Elektronen, die sich auf verschiedenen Umlaufbahnen in Neon-Edelgasatomen befinden, erst mit einer Zeitverzögerung aus dem Atom austreten. Mit dabei in der Kooperation waren Forscher des Max-Planck-Instituts für Quantenoptik (Garching), der Ludwig-Maximilians-Universität München, der Technischen Universität Wien, der Univ. Athen, und der King-Saud-Universität (Riad, Saudi-Arabien).

Bei ihren Experimenten schickten die Physiker hochenergetische Laserpulse mit der Dauer von rund vier Femtosekunden (10-15 Sekunden) im nahen Infrarot (NIR) auf die Edelgasatome. Zu dem Laserpuls synchronisierten die Forscher einen weiteren Lichtblitz, der weniger als 180 Attosekunden dauerte und dessen Wellenlänge sich im Extremen Ultraviolett (XUV) des Spektrums befindet. Mit dem Attosekunden-Lichtblitz lösten die Physiker die Elektronen aus den Orbitalen. Dabei sorgte der Lichtblitz dafür, dass entweder Elektronen aus dem äußeren 2p- oder dem näher zum Atomkern liegenden 2s-Orbital die Atome verließen. Mit dem synchronisierten Femtosekunden-Laserpuls zeichneten die Physiker dann auf, wann die rasenden Elektronen das Atom verlassen haben.

Bei den Messungen stellte sich heraus, dass trotz zeitgleicher Anregung der Elektronen, diese das Edelgasatom mit einem Zeitversatz von rund 20 Attosekunden verließen. „Eines der Elektronen verlässt das Atom früher als das andere. "Damit konnten wir zeigen, dass Elektronen nach Anregung durch Licht kurz zögern, bevor Sie das Atom verlassen", erklärt Dr. Martin Schulze, Postdoc im LAP-Team.

Herauszufinden, was dieses Zögern bewirkt, war auch eine Herausforderung an die theoretischen Physiker des LAP-Teams um Dr. Vladislav Yakovlev, und seine Kollegen von der TU Wien (Österreich) und der National Hellenic Research Foundation (Griechenland). Sie konnten mit aufwändigen Berechnungen den Effekt qualitativ bestätigen, kamen allerdings auf einen zeitlichen Versatz von nur fünf Attosekunden. Die Ursache dieser Diskrepanz dürfte in der Komplexität des Neonatoms liegen, das neben dem Kern aus zehn Elektronen besteht. "Der Rechenaufwand für das gesamte Atommodell unter Einbezug aller Wechselwirkungen zwischen allen Elektronen übersteigt die Rechenkapazität von heutigen Supercomputern", erklärt Yakovlev.

Immerhin konnten diese Untersuchungen die wahrscheinliche Ursache für das "Zögern" der Elektronen zu Tage fördern. Die Forscher gehen davon aus, dass die Elektronen nicht nur mit ihrem Atomkern interagieren, sondern sie sich ebenso untereinander beeinflussen. "Die Elektron-Elektron Wechselwirkung kann dazu führen, dass es ein Weilchen dauert, bevor das von der einfallenden Lichtwelle geschüttelte Elektron von seinen Artgenossen losgelassen wird und das Atom verlassen darf", sind sich Schultze und Yakovlev einig.

"Unsere Ergebnisse bedeuten einen weiteren wichtigen Einblick in die Wechselwirkungen von Elektronen in Atomen", erläutert Prof. Ferenc Krausz. Solche, bis heute nur unzureichend verstandenen Prozesse, haben entscheidenden Einfluss auf das Verhalten von Elektronen in den winzigsten Dimensionen. Elektronenbewegungen spielen bei allen elementaren Abläufen biologischer und chemischer Prozesse eine bedeutende Rolle. Ebenso bestimmen sie die Geschwindigkeit von Mikroprozessoren, den Herzstücken von Computern. Dafür ist die schnellste Messtechnik der Welt gerade gut genug: der beobachtete 20-Attosekunden-Versatz in der Austrittzeit der Elektronen ist das kürzeste jemals gemessene Zeitintervall in der Natur.

Text: Thorsten Naeser

Originalveröffentlichung:
M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz & V. S. Yakovlev.
"Delay in Photoemission", Science, 25. Juni 2010
DOI: 10.1126/science.1189401
Weitere Informationen:
http://www.attoworld.de Homepage LAP
http://www.munich-photonics.de Homepage des Exzellenzclusters
http://www.physik.uni-muenchen.de Fakultät für Physik der LMU
http://www.ph.tum.de/aktuelles Physikdepartment der TU München

Christine Kortenbruck | idw
Weitere Informationen:
http://www.munich-photonics.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Repairon erhält Finanzierung für die Entwicklung künstlicher Herzmuskelgewebe

23.06.2017 | Förderungen Preise

Zukunftstechnologie 3D-Druck: Raubkopien mit sicherem Lizenzmanagement verhindern

23.06.2017 | Informationstechnologie

Virologen der Saar-Uni entdecken neuen Mechanismus, der die Hautkrebs-Entstehung begünstigt

23.06.2017 | Biowissenschaften Chemie