Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UZH-Forschende entdecken neues Teilchen am CERN

27.04.2012
Physiker der Universität Zürich haben bei Experimenten am Teilchenbeschleuniger Large Hadron Collider (LHC) ein bisher noch unbekanntes Teilchen aus drei Quarks entdeckt. Damit konnte im LHC erstmals ein neues Baryon nachgewiesen werden. Das Baryon mit der Bezeichnung Xi_b^* bestätigt fundamentale Annahmen der Physik über die Bindung von Quarks.

In der Teilchenphysik bezeichnet die Familie der Baryonen Partikel, die aus jeweils drei Quarks zusammengesetzt sind. Die Quarks sind eine Gruppe von insgesamt sechs Teilchen, die sich durch ihre Masse und ihre Ladung unterscheiden.

Die beiden leichtesten Quarks, das so genannte up- und down-Quark bilden unter anderem die beiden Atombausteine, das Proton und das Neutron. Alle Baryonen, die aus den drei leichtesten Quarks (up-, down-, und strange-Quark) gebildet werden, sind bekannt. Von den Baryonen mit schweren Quarks konnten bisher erst wenige beobachtet werden. Sie können nur in Teilchenbeschleunigern künstlich erzeugt werden, da sie schwer und sehr instabil sind.

Im Rahmen der Protonenkollisionen LHC am CERN ist es den Physikern Claude Amsler, Vincenzo Chiochia und Ernest Aguiló vom Physik-Institut der Universität Zürich gelungen, ein Baryon mit einem leichten und zwei schweren Quarks nachzuweisen. Das Teilchen Xi_b^* besteht aus einem up-, einem strange- und einem bottom-Quark (usb), ist elektronisch neutral und hat einen Spin von 3/2 (1,5). Seine Masse ist mit derjenigen eines Lithium-Atoms vergleichbar. Mit der neuen Entdeckung sind nun zwei der drei von der Theorie vorausgesagten Baryonen in der Zusammensetzung usb beobachtet worden.

Als Grundlage der Entdeckung dienten Daten, die im CMS-Detektor gesammelt wurden, an dessen Entwicklung die Universität Zürich beteiligt war. Das neue Teilchen kann nicht direkt nachgewiesen werden, da es zu instabil ist, um vom Detektor erfasst zu werden. Xi_b^* zerfällt jedoch in einer bekannten Kaskade von Zerfallsprodukten. Ernest Aguiló, Postdoktorand aus der Gruppe von Prof. Amsler, identifizierte in den Messdaten Spuren der jeweiligen Zerfallsprodukte und konnte daraus eine Reihe rekonstruieren, an deren Ausgangspunkt ein Xi_b^*-Zerfall stand.

Die Berechnungen beruhen auf Daten von Protonenkollisionen mit einer Energie von 7 Tera-Elektronenvolt (TeV), die zwischen April und November 2011 vom CMS-Detektor gesammelt wurden. Insgesamt konnten 21 Zerfälle eines Xi_b^*-Baryons entdeckt werden. Dies ist statistisch genügend signifikant, um eine Zufallsmessung auszuschliessen.

Die Entdeckung des neuen Teilchens bestätigt die Theorie, wie Quarks binden. Sie leistet damit einen Beitrag zum Verständnis der starken Wechselwirkung, die als eine der vier Grundkräfte der Physik die Struktur der Materie bestimmt.

UZH und LHC

Die Universität Zürich ist mit drei Forschungsgruppen am LHC am CERN beteiligt. Die Gruppen von Prof. Amsler und Prof. Chiochia arbeiten am CMS-Experiment, die Gruppe von Prof. Straumann beteiligt sich am LHCb Experiment.

CMS-Detektor

Der CMS-Detektor dient dazu, Energie und Impuls von Photonen, Elektronen, Myonen und anderen geladenen Teilchen mit hoher Genauigkeit zu messen. Im 12'500 Tonnen schweren Detektor sind schichtweise verschiedene Messvorrichtungen angeordnet, mit denen die Spuren der bei den Kollisionen entstehenden Teilchen eingefangen werden können. An der Entwicklung des CMS waren weltweit 179 Institutionen beteiligt. In der Schweiz sind es die Universität Zürich, die ETH Zürich und das Paul Scherrer Institut.

Kontakte

Prof. Claude Amsler
Physik-Institut
Universität Zürich
Tel.: +41 22 767 29 14
E-Mail: claude.amsler@cern.ch
Website: http://www.mnf.uzh.ch/index.php?id=500

Prof. Vincenzo Chiochia
Physik-Institut
Universität Zürich
Tel.: +41 22 767 60 41
E-Mail: vincenzo.chiochia@cern.ch
Website: http://unizh.web.cern.ch/unizh/People/Vincenzo_Chiochia.htm

Beat Müller | Universität Zürich
Weitere Informationen:
http://www.mnf.uzh.ch/index.php?id=500
http://unizh.web.cern.ch/unizh/People/Vincenzo_Chiochia.htm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics