Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tieftemperaturrekord für flüssiges Wasser aufgestellt

08.10.2013
Wasser kann bei viel tieferen Temperaturen noch flüssig sein, als bisher angenommen.

Das haben Forscher der Universität Innsbruck um den Chemiker Thomas Lörting und der TU Dortmund um den Physiker Roland Böhmer nun experimentell nachgewiesen. Diese überraschende Erkenntnis wirft ein neues Licht auf die Frage, wie organische Verbindungen oder gar Leben im Weltall entstehen können.

Die Forschungsgruppe um Thomas Lörting vom Institut für Physikalische Chemie der Universität Innsbruck stellt unter hohem Druck und bei sehr tiefen Temperaturen hochdichtes, amorphes Eis her. Im Gegensatz zu kristallinem Eis sind die Wassermoleküle in amorphem Eis unregelmäßig angeordnet. Dieses Eis ist damit flüssigem Wasser sehr ähnlich - quasi die erstarrte Form von fließendem Wasser. Im Weltall kommt Eis fast ausschließlich in der amorphen Form vor, während es auf der Erde immer als kristallines Eis vorliegt.

„Wir entspannen das amorphe Eis, damit es in den Gleichgewichtszustand kommt“, erklärt Lörting. „Dann erwärmen wir es sehr langsam im Vakuum oder bei Umgebungsdruck und überprüfen, bei welcher Temperatur es sich verflüssigt.“ Flüssig definieren die Wissenschaftler einen Zustand, in dem der Stoff nach einer Störung innerhalb von höchstens 100 Sekunden in seinen Gleichgewichtszustand zurückkehrt, also „relaxiert“.

Flüssig bei -157 Grad Celsius

Die Innsbrucker Chemiker haben die Messungen zunächst mit einem Kalorimeter durchgeführt und kamen zu dem überraschenden Ergebnis, dass das hochdichte, amorphe Eis bereits bei rund -157 Grad Celsius (116 Kelvin) vom erstarrten in den flüssigen Zustand übergeht. „Es handelt sich dabei um eine hochviskose Flüssigkeit, die zäher als Honig ist“, beschreibt ERC-Preisträger Thomas Lörting das tief unterkühlte Wasser. Bei -148 Grad Celsius (125 K) relaxiert das hochdichte, flüssige Wasser innerhalb von einer Sekunde, wie Messungen mittels dielektrischer Spektroskopie an der Technischen Universität Dortmund zeigen.

„Wasser kann unter Umgebungsdruck oder Vakuum oberhalb von -157 Grad Celsius in flüssiger Form auftreten“, freut sich Thomas Lörting über diesen Durchbruch. Es handelt sich bereits um den zweiten, sogenannten Glasübergang, der an der Universität Innsbruck für Wasser gefunden wurde. Schon vor 30 Jahren hatte der inzwischen verstorbene Chemiker Erwin Mayer an der Universität Innsbruck den Glasübergang von niederdichtem, amorphem Eis bei -137 Grad Celsius gefunden.

Bedeutung für die Entstehung größerer Moleküle?

Diese neue Entdeckung könnte für unser Verständnis der Evolution von Molekülen und womöglich auch die Frage nach der Entstehung von Leben im Weltall von Bedeutung sein. Denn flüssiges Wasser gilt gemeinhin als das Lösungsmittel für chemische Reaktionen schlechthin, als Geburtsstätte der Moleküle des Lebens. Wenn Wasser bei sehr viel tieferen Temperaturen als bisher angenommen flüssig auftritt, wirft das ein neues Licht auf diesen Prozess. Auch kann die aktuelle Arbeit neue Ansatzpunkte für die Erklärung der vielen anormalen Eigenschaften des Wassers liefern. Das Team um Roland Böhmer und Thomas Lörting will nun das zähflüssige Wasser genauer untersuchen und dessen Eigenschaften näher charakterisieren. „Wir wollen wissen, wie sich andere Stoffe in diesem Wasser lösen lassen und wie die um ein Viertel höhere Dichte des Wassers die Reaktionsfähigkeit verändert“, sagt der Chemiker. „Hier öffnet sich uns ein neues Forschungsfeld, das Arbeit für weitere 30 Jahre liefert“, ist Thomas Lörting überzeugt.

Die aktuelle Arbeit entstand im Rahmen der Forschungsplattform Material- und Nanowissenschaften an der Universität Innsbruck und wurde vom Europäischen Forschungsrat (ERC), dem österreichischen Forschungsförderungsfonds (FWF) und der Österreichischen Akademie der Wissenschaften (ÖAW) finanziell unterstützt. Der Bessel-Preis der Humboldt-Stiftung ermöglicht Thomas Lörting mehrere Gastmonate in Dortmund – erstmals im September 2013.

Publikation: Water’s second glass transition. Katrin Amann-Winkel, Catalin Gainaru, Philip H. Handle, Markus Seidl, Helge Nelson, Roland Böhmer, and Thomas Loerting. Proceedings of the National Academy of Sciences 2013 DOI: 10.1073/pnas.1311718110

Rückfragehinweis:
Thomas Lörting
Institut für Physikalische Chemie
Universität Innsbruck
Tel.: +43 512 507 5062
E-Mail: thomas.loerting@uibk.ac.at
Roland Böhmer
Lehrstuhl Experimentelle Physik III
TU Dortmund
Tel.: +49 231 755-3514
E-Mail: roland.bohmer@tu-dortmund.de
Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1073/pnas.1311718110
- Water’s second glass transition. Katrin Amann-Winkel, Catalin Gainaru, Philip H. Handle, Markus Seidl, Helge Nelson, Roland Böhmer, and Thomas Loerting. Proceedings of the National Academy of Sciences 2013
http://www.uibk.ac.at/physchem/index.html.de
- Institut für Physikalische Chemie - Universität Innsbruck
http://e3.physik.uni-dortmund.de/de/
- Lehrstuhl Experimentelle Physik III - TU Dortmund

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie