Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tieftemperaturrekord für flüssiges Wasser aufgestellt

08.10.2013
Wasser kann bei viel tieferen Temperaturen noch flüssig sein, als bisher angenommen.

Das haben Forscher der Universität Innsbruck um den Chemiker Thomas Lörting und der TU Dortmund um den Physiker Roland Böhmer nun experimentell nachgewiesen. Diese überraschende Erkenntnis wirft ein neues Licht auf die Frage, wie organische Verbindungen oder gar Leben im Weltall entstehen können.

Die Forschungsgruppe um Thomas Lörting vom Institut für Physikalische Chemie der Universität Innsbruck stellt unter hohem Druck und bei sehr tiefen Temperaturen hochdichtes, amorphes Eis her. Im Gegensatz zu kristallinem Eis sind die Wassermoleküle in amorphem Eis unregelmäßig angeordnet. Dieses Eis ist damit flüssigem Wasser sehr ähnlich - quasi die erstarrte Form von fließendem Wasser. Im Weltall kommt Eis fast ausschließlich in der amorphen Form vor, während es auf der Erde immer als kristallines Eis vorliegt.

„Wir entspannen das amorphe Eis, damit es in den Gleichgewichtszustand kommt“, erklärt Lörting. „Dann erwärmen wir es sehr langsam im Vakuum oder bei Umgebungsdruck und überprüfen, bei welcher Temperatur es sich verflüssigt.“ Flüssig definieren die Wissenschaftler einen Zustand, in dem der Stoff nach einer Störung innerhalb von höchstens 100 Sekunden in seinen Gleichgewichtszustand zurückkehrt, also „relaxiert“.

Flüssig bei -157 Grad Celsius

Die Innsbrucker Chemiker haben die Messungen zunächst mit einem Kalorimeter durchgeführt und kamen zu dem überraschenden Ergebnis, dass das hochdichte, amorphe Eis bereits bei rund -157 Grad Celsius (116 Kelvin) vom erstarrten in den flüssigen Zustand übergeht. „Es handelt sich dabei um eine hochviskose Flüssigkeit, die zäher als Honig ist“, beschreibt ERC-Preisträger Thomas Lörting das tief unterkühlte Wasser. Bei -148 Grad Celsius (125 K) relaxiert das hochdichte, flüssige Wasser innerhalb von einer Sekunde, wie Messungen mittels dielektrischer Spektroskopie an der Technischen Universität Dortmund zeigen.

„Wasser kann unter Umgebungsdruck oder Vakuum oberhalb von -157 Grad Celsius in flüssiger Form auftreten“, freut sich Thomas Lörting über diesen Durchbruch. Es handelt sich bereits um den zweiten, sogenannten Glasübergang, der an der Universität Innsbruck für Wasser gefunden wurde. Schon vor 30 Jahren hatte der inzwischen verstorbene Chemiker Erwin Mayer an der Universität Innsbruck den Glasübergang von niederdichtem, amorphem Eis bei -137 Grad Celsius gefunden.

Bedeutung für die Entstehung größerer Moleküle?

Diese neue Entdeckung könnte für unser Verständnis der Evolution von Molekülen und womöglich auch die Frage nach der Entstehung von Leben im Weltall von Bedeutung sein. Denn flüssiges Wasser gilt gemeinhin als das Lösungsmittel für chemische Reaktionen schlechthin, als Geburtsstätte der Moleküle des Lebens. Wenn Wasser bei sehr viel tieferen Temperaturen als bisher angenommen flüssig auftritt, wirft das ein neues Licht auf diesen Prozess. Auch kann die aktuelle Arbeit neue Ansatzpunkte für die Erklärung der vielen anormalen Eigenschaften des Wassers liefern. Das Team um Roland Böhmer und Thomas Lörting will nun das zähflüssige Wasser genauer untersuchen und dessen Eigenschaften näher charakterisieren. „Wir wollen wissen, wie sich andere Stoffe in diesem Wasser lösen lassen und wie die um ein Viertel höhere Dichte des Wassers die Reaktionsfähigkeit verändert“, sagt der Chemiker. „Hier öffnet sich uns ein neues Forschungsfeld, das Arbeit für weitere 30 Jahre liefert“, ist Thomas Lörting überzeugt.

Die aktuelle Arbeit entstand im Rahmen der Forschungsplattform Material- und Nanowissenschaften an der Universität Innsbruck und wurde vom Europäischen Forschungsrat (ERC), dem österreichischen Forschungsförderungsfonds (FWF) und der Österreichischen Akademie der Wissenschaften (ÖAW) finanziell unterstützt. Der Bessel-Preis der Humboldt-Stiftung ermöglicht Thomas Lörting mehrere Gastmonate in Dortmund – erstmals im September 2013.

Publikation: Water’s second glass transition. Katrin Amann-Winkel, Catalin Gainaru, Philip H. Handle, Markus Seidl, Helge Nelson, Roland Böhmer, and Thomas Loerting. Proceedings of the National Academy of Sciences 2013 DOI: 10.1073/pnas.1311718110

Rückfragehinweis:
Thomas Lörting
Institut für Physikalische Chemie
Universität Innsbruck
Tel.: +43 512 507 5062
E-Mail: thomas.loerting@uibk.ac.at
Roland Böhmer
Lehrstuhl Experimentelle Physik III
TU Dortmund
Tel.: +49 231 755-3514
E-Mail: roland.bohmer@tu-dortmund.de
Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1073/pnas.1311718110
- Water’s second glass transition. Katrin Amann-Winkel, Catalin Gainaru, Philip H. Handle, Markus Seidl, Helge Nelson, Roland Böhmer, and Thomas Loerting. Proceedings of the National Academy of Sciences 2013
http://www.uibk.ac.at/physchem/index.html.de
- Institut für Physikalische Chemie - Universität Innsbruck
http://e3.physik.uni-dortmund.de/de/
- Lehrstuhl Experimentelle Physik III - TU Dortmund

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen