Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Startschuss für Kooperation zwischen MPQ und King Saud Universität

21.11.2008
Das Max-Planck-Institut für Quantenoptik (MPQ) in Garching bei München wird in den nächsten Jahren auf dem Gebiet der Laserentwicklung eng mit Forschern der King Saud Universität in Riad (Königreich Saudi-Arabien) zusammenarbeiten.

Dies erklärten Prof. Ferenc Krausz, Geschäftsführender Direktor des MPQ, und Professor Ali Al-Gamdi, Vizerektor der KSU, anlässlich einer kleinen Eröffnungszeremonie am 20. November 2008 am MPQ.

Wissenschaftler des MPQ und der King Saud Universität (KSU) verfolgen dabei gemeinsam das Ziel, neuartige Strahlungsquellen für kohärente, hochintensive und ultrakurze Lichtpulse zu entwickeln, die versprechen, sowohl der Grundlagenforschung als auch der Industrie hohen Nutzen zu bringen. Die MPQ-KSU-Kooperation ist Teil des "Nobel-Programms" der KSU, das die technologische Weiterentwicklung der saudiarabischen Gesellschaft fördern soll.

Das Abkommen, das Professor Abdullah Al Othman, Rektor der KSU, und Pof. Ferenc Krausz am 16. Januar 2008 - bei einem Besuch von hochrangigen saudiarabischen Politikern wie dem Minister für Bildungs- und Hochschulwesen Dr. Khalid bin Mohammed Al-Angari sowie führenden Wissenschaftlern saudiarabischer Universitäten - am MPQ unterzeichneten, sieht eine enge und langfristige Zusammenarbeit auf den Gebieten der angewandten Laserforschung und den Nanotechnologien vor.

Von Seiten des MPQ beteiligen sich an der Kooperation vor allem die Abteilung Laserspektroskopie von Nobelpreisträger Prof. Theodor W. Hänsch und die Abteilung Attosekunden- und Hochfeldphysik von Prof. Ferenc Krausz. "Wir freuen aus auf die Zusammenarbeit mit dem MPQ, das zu den weltweit führenden Forschungsstätten auf dem Gebiet der Photonik zählt", betont der saudiarabische Teamleiter, Prof. Abdallah Azzeer. "Außerdem möchten wir, dass unsere Studenten von der Erfahrung und dem Wissen herausragender Nobelpreisträger profitieren."

Bei den drei Projekten, die jetzt im Rahmen der MPQ-KSU-Kooparation beginnen, geht es um die Entwicklung neuartiger Strahlungsquellen für kohärente, hochintensive und extrem kurze Lichtpulse. Im Grenzbereich der sichtbaren/infraroten Strahlung (bei Wellenlängen von ca. 800 Nanometern) stehen solche Lichtpulse bereits seit mehreren Jahren zur Verfügung. Die Ausweitung des Spektralbereichs sowohl zu längeren (infraroten) als auch zu kürzeren Wellenlängen (bis zum extremen Ultraviolett) hin würde völlig neue Perspektiven für die Grundlagenforschung aufzeigen, aber auch der Industrie z.B. bei der Herstellung von Halbleiterchips nützen.

Für die Erzeugung der Lichtpulse bedienen sich die Wissenschaftler eines mittlerweile verbreiteten Verfahrens, der Erzeugung sogenannter "Harmonischer" Frequenzen: beim Gang von Laserlicht durch ein optisch nichtlineares Medium entsteht Strahlung, deren Frequenz ein ganzzahliges Vielfaches der Grundfrequenz ist. Das von Prof. Reinhard Kienberger (MPQ, Technische Universität München) geleitete Projekt zielt darauf ab, mit extrem intensiven 800-Nanometer-Laserpulsen (IR-Licht), die aus wenigen Wellenzügen bestehen, "Harmonische" im ultravioletten Spektralbereich zu erzeugen. Als nichtlineare Konversionsmedien sollen hochdichte Edelgase verwendet werden. Diese Technik birgt das Potential, Lichtpulse im tiefen UV-Bereich mit extrem kurzer Dauer zu erzeugen. Sogar Pulsdauern bis zu einer Femtosekunde sind in Reichweite. "Solche Lichtpulse würden es erstmals ermöglichen, direkt auf die Elektronen in Molekülen zuzugreifen und auf diesem Weg molekulare Prozesse und chemische Reaktionen zu steuern", erklärt Prof. Kienberger.

Einen noch kurzwelligeren Spektralbereich, extremes Ultraviolett (XUV), soll ein Projekt unter Leitung von Dr. Jens Rauschenberger (MPQ, Ludwig-Maximilians-Universität) und Dr. Thomas Udem (MPQ) erschließen. Dafür will Dr. Rauschenberger das als nichtlineares Medium verwendete Gastarget in einem sogenannten "Überhöhungsresonator" anordnen, der die nicht konvertierte Strahlung wieder dem Medium zuführt. Auf diese Weise wird die Konversionseffizienz erheblich gesteigert. Die resultierende XUV-Strahlung hat eine weit höhere mittlere Leistung bei gleichzeitig höherer Pulswiederholungsrate als bei herkömmlichen Methoden.

Wegen dieser Vorzüge ließe sich z.B. die Frequenzkammtechnik auf den XUV-Bereich ausdehnen. Den Grundlagenforschern bietet sich damit die Möglichkeit der hochpräzisen Helium-Spektroskopie, die eine weiter gehende Überprüfung der Quantenelektrodynamik darstellt. "Von der neuen Lichtquelle kann aber auch die Industrie profitieren", betont Dr. Rauschenberger. "Sie ermöglicht es, die bei der XUV-Lithographie bei 13 Nanometern verwendeten optischen Komponenten zu charakterisieren. Dies ist der entscheidende Schlüssel im Wettlauf zu immer kleineren Halbleiterstrukturen und schnelleren Computern."

In einem weiteren Projekt, das Dr. Laszlo Veisz (MPQ) leitet, sollen die kurzen, etwa drei Feldschwingungen ausführenden Hochleistungspulse (10-TW, 8-fs, 800-nm) aus dem MPQ-Laser LWS(Light Wave Synthesizer)-10 in Lichtpulse aus nur etwa einer Schwingung im nahen Infrarot, mit Wellenlängen von etwa ein bis zwei Mikrometern, umgewandelt werden. Dieser Frequenzumwandlung liegt der Prozess der stimulierten Ramanstreuung in molekularen Gasen (im vorliegenden Fall H2) zugrunde. Dabei überträgt das eingestrahlte Laserlicht Energie auf die Moleküle, wodurch sich deren Vibrations- und Rotationsmoden ändern.

"Solche Lichtpulse wären eine wirklich spektakuläre Errungenschaft mit weitreichenden Implikationen", meint Dr. Veisz. "Wir könnten damit im Labor kurzwellige kohärente Strahlung mit Photonenenergien bis in den Kiloelektronenvolt-Bereich erzeugen. Ferner könnten wir ganz neue Mechanismen ausnutzen, um hochdichte monoenergetische Elektronenstrahlen mit Lasern effizient zu beschleunigen."

Das am 16. Januar unterzeichnete Abkommen sieht zunächst eine Kooperationsdauer von drei Jahren vor, wird aber erwartungsgemäß automatisch verlängert. In einem ersten Schritt werden jetzt ausgewählte Studenten und Doktoranden der King Saud Universität am MPQ an den oben erwähnten Projekten mitarbeiten. "Wir hoffen, dass wir durch diese Zusammenarbeit nicht nur die Fortschritte bei der Entwicklung vielversprechender neuer Lichtquellen beschleunigen, sondern auch einen wichtigen Beitrag zur Verbreitung der wichtigen Zukunftstechnologie "Photonik" leisten können", resümiert Prof. Krausz. [OM]

Prof. Dr. Ferenc Krausz
Geschäftsführender Direktor
Max-Planck-Institut für Quantenoptik
Professor, Lehrstuhl f. Experimentalphysik
Ludwig-Maximilians-Universität München
Tel.: +49-89-32905 612
Fax: +49-89-32905 649
E-Mail: ferenc.krausz@mpq.mpg.de
Dr. Layla Bahmad
Büro der MPQ-KSU-Kooperation
Tel.: +49-89-32905 794, Fax: - 200
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Tel.: +49-89-32905 213, Fax: - 200

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.munich-photonics.de
http://www.attoworld.de
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften